
MANAGEMENT OVERVIEW
A GUIDE TO THE BENEFITS OF USING

DESIGN RECOVERY & REBUILD

Design Recovery & Rebuild with
X-Analysis

Databorough Ltd.
66 York Road • Weybridge • UK

info@databorough.com
Phone +44 (0)1932 848564 • Fax +44 (0)1932 859211

The objective behind the true modernization exercise is to extract the essence or design of the legacy
application and reuse these designs as appropriate in rebuilding the application, using modern
languages, development tools, and techniques, tapping into more widely available skills and resources. In
this Overview document we shall see how the Design Recovery & Rebuild tool set helps in rebuilding an
application.

Benefits

The Design Recovery & Rebuild tool set offers following benefits:

• Automatically construct cleanly designed new applications from the extracted UML & Business Logic
• Generates new projects in IDE's such as MyEclipseBlue or Rational / WDSc
• MVC generation from recovered designs as JSF/Java or JSF/EGL
• Generates source objects from recovered Business Rule Logic & integrates with JSF’s
• Reuses existing stored procedures & assists in creating new ones
• Creates Hibernate configuration files from recovered relational model
• Maps Hibernate configuration to new UI’s
• Web Service Generation
• Compare Original and Recovered code

And many more...

Recovering an Application Design
The concept of reusing existing code or logic is not a new one. The challenge has always been to identify,
isolate, and reuse only those designs that are relevant in the new context in which they are desirable. The
sheer volume of code, its complexity, and the general lack of resources to understand legacy languages,
specifically RPG, represents a tragic potential
waste of valuable business assets. In many cases,
these expensive and well-established legacy
designs have little chance of even having their
relevance assessed, let alone being reused. The
Design Recovery Solution Set of X-Analysis
addresses this problem more directly, by
isolating, indexing, and documenting those
design elements that could be relevant in a
modern version of the application being
assessed.

Modern applications are implemented with
distributed architecture. A popular standard
used for this architecture is MVC or Model-View Controller. Figure given below display a typical legacy and
MVC architecture side by side. MVC allows for independent implementation and development of each
layer, and facilitates OO techniques and code re usability rarely used in legacy applications. All these
characteristics of a modern application radically improve the maintainability and agile nature.

Legacy applications do have these same elements, but
they tend to be embedded in and mixed up in large
monolithic programs, with vast amounts of redundancy
and duplication throughout. Implementing an RPG
application using MVC requires that the business logic be
separate from the user interface and controller logic. This
can be implemented using a web interface for the view,
with the controller logic written in a modern language
that supports web interfaces such as Java, EGL or C#. The
optimum modernization result is to reduce dependency
on legacy languages as much as is possible, if not
altogether. To achieve this recovered design assets are
reused as input to redevelop the appropriate layer.

Recovering the Data Model
The relational model of an enterprise application is an extremely powerful piece of information and
potentially valuable asset to the organization. Unlike 2E systems for almost all RPG or COBOL applications
running on System i, there is no explicit data model or schema defined. By the term model, we are
referring to the foreign key or relational model, not just the physical model of the database. The relational
model or architecture of the database can be reused in a number of scenarios including:

Illustration 1: Legacy versus modern architecture

Illustration 2: Modernized Architecture with
X-Analysis

• Understanding application architecture
• Data quality analysis - referential integrity testing
• Automated test data extraction, scrambling and aging
• Building BI applications or Data warehouses

The X-Analysis has unique capability of automatically deriving the explicit system data model from a
legacy RPG, COBOL or 2E application. Let us have a look at this and the model reuse capability in a bit
more detail.

 Recovering the User Interface
The screens of a legacy application are a classic example where the design is useful in a modernization
context, and the code is not. All modern IDE's provide powerful UI development tools. Modern UI
standards and preferences for style and technology also vary from project to project. The sheer number of
screens in a legacy application presents a logistical problem in recreating them manually. X-Analysis lets

Illustration 3: Screen Design Layout in X-Analysis

you see what the legacy screen looked like without having to run the application which is a great time
saver for people who haven't been involved with the original application:

Screen designs of legacy applications are not just about look and feel, there are attributes, and logic
embedded which from a design point of view is relevant, no matter what technology being used to
implement them.

X-Analysis extracts User Interface design information and stores it as meta-data in the X-Analysis
repository. This is used as reference documentation for rebuilding UI's manually, or for programmatically
regenerating new View and Controller artifacts in the chosen new technology. X-Analysis currently
generates a JSF/Facelets UI version. The design meta-data can also naturally be used to generate new
interfaces using any technology such as EGL, Ajax, RCP, C#, VB or even RPG.

Recovering Business Rule Logic
Once the system UI, data access & data model has been recovered & the application has been rebuilt or
rewritten from this design, it is then necessary to extract the logic that gives the application its particular
characteristics. The generic term for such logic is Business Rules. The challenge is to extract or "harvest"
these rules from the legacy code.

The problem is that in the vast majority of legacy RPG and COBOL programs, the business rule logic is
mixed in with screen handling, database I/O, and flow control. So harvesting these business rules from
legacy applications requires knowledge of the application and the language used to implement it, both of
which are steadily diminishing resource.

Once harvested these rules need to be narrated and indexed, thus providing critical information for any
analysts, architect or developer charged with rebuilding a legacy application. The task of harvesting
business rules is therefore a highly skilled, labor-intensive, and costly exercise for any organization.

X-Analysis accomplishes this task by automatically scanning the RPG and COBOL programs and 2E model
programmatically. It then separates out rule code from the body of the application and identifies, indexes,
narrates, and stores business rule logic code into a structured, usable repository. In the final part of the
process, it supplies appropriate textual narratives to describe these harvested rules.

Once the rules are derived they can be viewed in summary form:

Illustration 4: Business Rule Summary

Or embedded in the code from where they are derived (Embedded Rules):

The business rule repository can then either be used programmatically to generate new code, or the built-
in documentation, cross referencing where-used and annotation capabilities, may be used by new
developers as the necessary input for re-specification exercises, whether for new applications or for
modifications to the current system.

UML Diagramming
The objective of UML diagrams in this context is to help sketch application designs and to make such
sketches portable and reusable in other IDE's such as Rational, Borland, MyEclipse, etc. The three diagrams
automatically generated by X-Analysis are: Activity diagram, Use Case diagram and Class diagram.

Illustration 5: Embedded Rules Program

Illustration 6: Activity Diagram for a Program Illustration 7: Use Case Diagram for a Program

Producing any of these diagrams from within X-Analysis is as simple as right-clicking on an object and
selecting the appropriate option from the menu.

Using Design Recovery for Rebuilding
Whilst Design Recovery is very valuable for documentation and application support purposes the real
benefits come when the recovered design can be used to modernize or re-develop a system. Reusing
existing designs programmatically can provide a dramatic productivity gain in rebuilding an application.
While legacy application designs in their entirety might not suit a modern application implementation,
design components are often suitable, as long they can be re-used at a sufficiently high level without
introducing complexity to the redeveloped application. Therefore, being able to select and enhance, or
ignore these at a granular level, removes the inheritance of irrelevant or legacy-specific code constructs,
and allows direct access to elements that might have otherwise been deemed unusable in their current
form.

Another important factor in this scenario is the ability to choose an implementation technology or
language that suits the technology constraints or resources specific to a region or organization. The next
sections cover how we can use the recovered application design in different ways to effect varying levels
of modernization and re-development.

Database Modernization - using the Data Model Assets
Whilst it has always been possible to access System i data in a relational database like fashion there was
originally no way of defining your database in the traditional relational database form with a schema or
model. This has meant that most System i applications don't have an explicitly defined relational database

Illustration 8: Class Diagram for a Program

schema or model.

The data model for a legacy application as deduced by X-Analysis can be used to modernize the database
and database access as well as providing valuable information for analysis and documentation. Once you
have a modernized database you gain a number of advantages:

• Ability to use modern Object Relational Mapping (ORM) software such as Hibernate for rapid
application development in Java and other modern languages.

• Because the database
is defined in purely SQL
terms rather than in a
proprietary file format
it becomes portable i.e.
it is now an option to
consider moving the
database to another
platform.

• Openness and
Standards compliance
using Industry
standard SQL means
that many different tools and applications on multiple platforms can easily access and use your
modernized database.

• Improved performance as IBM's data retrieval efforts have been concentrated on SQL access rather
than file based access for many years now

Illustration 9: DDS of a File

Illustration 10: SQL converted from DDS

• Reduced dependency on System i specific skills such as DDS, which may led to cost savings and
reduced risk.

• Data Integrity - Journaling is available for SQL access just as it has always been for file-based access.
Constraints and referential integrity can be implemented directly at the database level where they
are unavoidable rather than at the program level. Databases triggers allow code to be run before or
after records are added, updated or deleted providing an easy way of enforcing compliance, audits,
validations and applying business rules.

Rebuilding the View
We described how useful screen design information is extracted into Function Definitions in the X-
Analysis repository. These function definitions are effectively input specifications for generating new UI's
or Views. The X-Analysis Modernization Tool set actually uses the Function Definitions to automatically,
generate JSF/Facelets and Java bean source for each recovered screen design.
EGL versions are also available for View/Controller generation, with future generation options for PHP, C#,
and XAML, becoming available from Databorough and other Business Partners.

Actions from the function definitions translate effectively into links on the generated JSF/Facelets, and
these can be implemented with tab, buttons, or any appropriate UI standard demanded by a project. The
required logic to invoke these actions is placed in the appropriate methods of the generated Java Bean as
described below.

Rebuilding the Controller
The Java bean that drives the JSF/Facelet has standard methods for Data I/O, navigational actions, and for
using any residual services that might remain on the legacy server in RPG, COBOL or 2E. This JSF bean has
standardized exit points and a set of standard parameters making maintenance and development more
efficient and consistent.

A separate call bean is implemented for each transaction group or legacy service program. This call bean
provides a standard interface to these re-engineered legacy RPG services, and therefore greatly simplifies
the controller or JSF bean as it is often referred to. In the case of a set multiple JSF's that make up a
transaction, the call bean also acts as a persistence manager for the transaction.

Reusing Business Rules
The optimum design objective is to move as much of the business rule logic into the Java as possible, thus
reducing the dependency on legacy languages. The monolithic architecture of legacy applications
produces significant amounts of redundant and duplicate validation and field or calculation logic type
business rules. These need to be re-factored if the maintainability of the application maintenance is to be
improved - a primary objective of modernization in the first place.

This means that code duplication & redundancy can be almost completely avoided in the modern
application. Typically, the only logic recreated in UI specific classes or beans will be context specific
calculations field logic such as calculating the value of the order line being captured, along with
conditional display or navigation logic for some UI's These new beans/classes should therefore be fairly
simple and easy to maintain by comparison to their legacy counterparts.

The fact that we can easily verify that business rules from the legacy system have been built into the new
system provides a high degree of confidence in the new system and is important from a compliance and
audit standpoint.

The objective behind the true rebuilding exercise is to extract the essence or design of the legacy
application and reuse these designs as appropriate in rebuilding the application, using modern
languages, development tools, and techniques, tapping into more widely available skills and resources.
The Design Recovery & Rebuild tool set offers simple way of rebuilding a complex legacy application.

Experience the fully loaded X-Analysis with 30 days trial copy of the software.
For any information regarding the X-Analysis please visit our web site:

www.databorough.com
or write e-mail to us at:

info@databorough.com

Corporate Headquarters >

Databorough Ltd.
Weybridge Business Centre,
66 York Road,
Weybridge,
KT 129DY
United Kingdom
) 044-1932-848564
7 044-1932-859211
+ info@databorough.com
8 www.databorough.com

International Office >

Databorough Services
Suit# / Box# 504,
92 Caplan Avenue,
Barrie,
Ontario,
L4N 9J2
Canada
) 01705-458-8672
) 1800-605-5023 Toll Free
+ info@databorough.com

 8 www.databorough.com

Databorough
© copyright Databorough 2010

Highlights

● Fully automated and integrated documentation with X-Analysis
● Automatically construct cleanly designed new applications
● Generation of UML Activity, Use Case and Class Diagrams
● Creates XML Business Rule Model from recovered business rule logic
● Creates Transaction Model from screens, I/O, program actions/options, DB Model
● Can be used over user defined application areas or individual programs
● MVC generation from recovered designs as JSF/Java or JSF/EGL
● Generates source objects from recovered Business Rule Logic & integrates with JSF’s
● Reuses existing stored procedures & assists in creating new ones
● Maps Hibernate configuration to new UI’s
● Compare Original and Recovered code

	Rebuilding the View
	Rebuilding the Controller
	Reusing Business Rules

