X

Databorough

A Visual Guide to Automated MVC

Reengineering

Steve Kilner

A Visual Guide to Automated MVC Reengineering
This guide has the following sections:

Three Steps To New and Improved Systems

Why Reengineer?

Bad Practices of Reengineering — What Not To Do
Best Practices — Two Good Options

Automated Restructuring and Modernization of Monolithic Legacy RPG Code
. Overview.
. Restructuring RPG — the Details.
. Converting Restructured RPG to Another Language.

oA WwWN

While this page explains automated reengineering in the context of Databorough

products, it also presents an essential strategy for IT organizations with legacy
RPG applications

By first restructuring legacy RPG programs into a modern
architecture, new capabilities emerge to

e extend the life of RPG application - or -
e migrate to a new language and platform

Three Steps (or maybe just TWO) to New & Improved System

Ul Design
Meta-Data TEb Ui
(View ava,
Controller) ASP.Net
Design RPGLE-Free Java or C#
Business Business
Repository Logic Logic
X-Analysis (Model) (Model)

] : | ‘ | :
Extract Restructure Convert

Design RPG Language
(optional)

A Visual Guide to Automated MVC Reengineering

Extract Design — The first step in any reengineering project is to recover as much
intelligence from the existing application as possible. X-Analysis has an amazing
amount of information it recovers about applications. For example, X-Analysis
generates the following numbers for one large scale ERP application:

Mumberof objects 25,107
Total lines of code 13,391,232
Program to Program relationships 205,261
Programtofile relationships 77,292
Mumber of business rules 489,764
Mumber of Tables/Files 2,491
Mumberof data modelrelations 5,485
Mumber of fields 124,519
Mumber of fields/Variables where used 19,274,551
Restructure RPG - Restructuring monolithic RPG code into an architecture of

OO/MVC/REST brings numerous benefits, both for ongoing maintenance, if the
system is to be retained, and for complete reengineering if migrating to another
language, such as Java or C#.

Using Databorough’s X-Modernize tool, legacy, monolithic RPG programs can be
restructured into a modern architecture. Such a restructuring results in the
business logic residing in exportable RPGLE/Free procedures. These programs
represent the model portion of the architecture. X-Modernize also provides the
meta data for you to construct your own view and controller components, which
may be in RPG, Java or C# for the controller layer and DDS, JSF or .Net for the
view layer.

Convert Language (optional) — For organizations who have made a strategic
decision to migrate to a new language or platform, Databorough’s X-Migrate
product (formerly X-Redo) completes the transition from restructured RPG into
another language, such as Java or C#.

An important benefit of using the restructured RPG for the language conversion is
that it facilitates bridging the knowledge gap between the RPG application and the
new language application. The new language application retains the same essential
components as the restructured RPG application thus enabling both RPG
developers and new language developers to easily compare code results.

X-Migrate also provides the extra step of creating the view and controller
components in the target languages, Java, C#, JSF, .Net.

A Visual Guide to Automated MVC Reengineering

Why Reengineer?

Typical RPG applications represent millions of dollars of investment over the years
of their existence.

Such applications typically contain many thousands of business rules , data
modeling rules and user interaction rules. To attempt to rewrite so much

functionality from scratch would be a huge undertaking and can be greatly
expedited by making use of information from the existing application.

Some of the Goals of Reengineering can Include:

Obtaining the benefits of a more modern architecture, such as:

* Modularity.
* Loose coupling .
* Reusability

* Accessibility
* Distributability
* Scalability

« Improving the application’s maintainability and responsiveness to business
needs. By untangling the accumulation of many years of modifications and
restructuring and refactoring overly complex, monolithic code, maintainability
can be significantly improved

« Exposing functionality embedded within the application so that a web
services, or SOA, architecture can be realized

* Moving the application to another language or platform more in line with
future directions of IT.

There is no single correct approach to reengineering — there are many options, and
each organization must decide which option best fits its strategy and needs.

A Visual Guide to Automated MVC Reengineering

Bad Practices of Reengineering- What Not to Do

Do not design and
code from scratch

Design and Code
Mew systam

— Corvert code into
new language

Do not convert
line by line

Do not design from scratch — You will add huge amounts of risk, cost and time to
your project. Your legacy system has vast amounts of proven, recoverable business
rules, data rules and application definitions — use them and save on money, time
and risk.

Do not convert line by line — You think your current system’s maintenance is slow,
expensive and risky? Wait till there is no individual, let alone an entire team, who
knows both your business and the new programming language.

A Visual Guide to Automated MVC Reengineering

Bad Practices of Reengineering- Two Good Options

Option 1: Recover rules
and other info and use it

to redesign or purchase
- Design and Code
~%| Mew system
Racover Business
Rules, Data Rules = Evaluate & Deploy
rd App Architect i
and App Archiieciure ISV Package
Merwy
Source &
Cbjects
Restructure Legacy Corwvert restructured
) Code into MVC/OO s code into new
architeciure language, if desired

Option 2: Restructure
code and then convert it

Option 1: Recover rules to rewrite or purchase — Your legacy application may
represent as much as millions of dollars of investment. It's full of time-tested
business rules, data relationships, application boundaries and so on. You may well
want to improve all those things, but chances are that the vast majority of this
design is still good — use it!

The recovered business rules and other information can be fed into:

e The requirements and design processes of a new system, or
e The functionality and gap analyses of packages being considered for
purchase

Option 2: Restructure code first, and then convert it — Before converting your
RPG application to another language, first restructure it into a modern architecture
with characteristics such as:

* Object oriented structure

« Model-View-Controller, MVC, architecture
 Stateless, or REST, session management

* Free formatted coding, such as RPGLE/Free

By first restructuring RPG into a modern architecture it enables the existing team
with their existing skills to understand and work with a more modern architecture.

It also has the benefit of improving the maintainability and openness of the
application.

A Visual Guide to Automated MVC Reengineering

Any subsequent conversion to another language, if desired, results in a new
application with the same component architecture as the original, restructured
application, thus greatly improving understanding and manageability.

Automated Restructuring and Modernization of Monolithic
Legacy RPG Code

Overview

Once X-Analysis has been used to recover design information, X-Modernize can
build the restructured components in RPGLE/Free, and provide view and controller
meta data. The meta data can be used to write the view and controller components
in the language of your choice, as shown below (RPGLE/Free shown as example in
diagram):

Legacy Monolithic Code Restructured RPG Code

View
DDS Dspf
Cr
Client/Browser

DDS Dspf
A
Y
A
Controller
¥ RPGLE Free
Monolithic RFG
Program ——T —
sj = | |
[
Procadure | Procedura | Procedure | Procedure | Procaedure
Y
Database Model RPGLE/Free Component
[
Y
Database

In this diagram, the monolithic RPG program and its display file are restructured
into three components:

A Visual Guide to Automated MVC Reengineering

Model - this component is comprised of RPGLE/Free with all code having been
reorganized into procedures that are exportable and may be called by other
components, specifically the controller component.

View — the initial Databorough restructuring process, as executed by X-Modernize,
provides the meta data necessary to manually code the view component. The view
component may be coded as existing display file DDS, or recoded into JSF or .Net.

Controller — like the view component, the initial restructuring process provides the
meta data enabling the development of a controller component in RPG , Java or
C#. This component controls the interaction between user (the view) and the
functionality (the model).

Understanding what is generated by different Databorough products related to
reengineering-

¥X-Modernize Creates X-Migrate Creates
Model Restructured RPG Restrutured RPG components
componentsin RPGLE/Free | convertedintolavaor C#
View Metadatadescribing view | View componentsinlSFor
reguirements .Net
Controller hetadata describing Controller componentsin
controllerrequirements RPGLE/Free, lavaorC#
Database Layer Database CRUD components
in REGLE/Free, lavaorC#

Note: The X-Analysis module is also required inorder to build the repository needed
to drive these functions.

Restructuring RPG - The Details

By leveraging the intelligence gathered in the X-Analysis repository, X-Modernize
can restructure monolithic, procedural RPG code into more manageable and useful
procedures.

The overall architecture being created is:

* Object oriented, in so far as is practical in RPGLE

¢ MVC architected

+ Stateless, making use of a state data management object, also known as a
session bean

A Visual Guide to Automated MVC Reengineering

Legacy Monolithic Code Restructured RPG Code
008 Degt
DDS Dspf b
|) X

¥ ClientBrowser

T
Controller Component in RPGLE/Free
Y
Monaolithic RPG Program EVENTS
O — Usser
System
[Initializing logic Medel Functions Mavigational \\
| X
[\‘\
= SUBR 1 sommemmmneae Y \
by
State Management Data A
|EXFMT SCR1 :
“Session Bean® ,
' \
o= SUBR 2 e e v v 1 ‘li
Madal Componant in RPGLEFrea External
EXFMT SFL1 .
Exposed | Exposed | Exposed | Exposed | Exposed
I =] Procedure | Procedure | Procedurne | Procedure | Procedure:
Initialize Pra- Process Pra- Process
B] oL L — Program | Display Display
Process
SCR1 SCR1 SFL1 SFLY
-~ SUBR £ e
A
Subr X Subr Y Subs Z
A
Li ¥

Database Database

A Visual Guide to Automated MVC Reengineering

View component — By design, the view component handles the Ul data definitions,
layout and user event definitions. In the first pass of restructuring, X-Modernize
provides meta data that can be used as design specifications for developing the
view component in JSF or .Net.

Controller component — By design, the controller component receives all events,
whether system generated or user generated, such as function keys, selecting
subfile options, etc, and invokes the appropriate procedure in the model
component. The controller component also receives and retransmits the state data
management object, ensuring that all data needed to maintain state is preserved in
each user session. In the first pass of restructuring, X-Modernize provides meta
data that can be used as design specifications for developing the controller
component in RPG, Java or C#.

Model component - The model component contains the essence of the
functionality of the original RPG program. All business logic, such as that used for
loading data from files, preparing data for display, validating data, preparing data
for output and other miscellaneous calculations are contained in the model
component.

All such functionality is organized into exportable procedures, which are called by
the controller component, or anything else, if desired. The procedures are
organized around the display of screen formats, such that for any given screen
format that is displayed in a user session, there is one procedure for preparing the
format for display, and another one for post-display processing, such as validations
or data output.

State management data — In order to create a stateless architecture, a data object
is created which contains all data necessary to maintain the state of the user’s
session between screens. This data object is passed back and forth between the
controller component and the model component.

Converting Restructured RPG to Another Language

Once an RPG program or application has been restructured, it is optimally
positioned for conversion to a more modern language, if that is the direction of IT.

The point should be made, however, that restructuring RPG may be an end strategy
in itself, as the application’s maintainability and openness to SOA and other
interfaces is greatly improved.

If desired, however, the restructured RPG may undergo a further step of being
converted to Java or C#.

A Visual Guide to Automated MVC Reengineering

Restructured RPG Code Java or C# Code
View
DOS Dspf View
Or ClienyBrowsar
Chent/Browser JSF, HTML
] 'y
Y [
Controller Component in RPGLE Free Controller Compenent in Java or C8
EVEMNTS EVENTS
— —) —
Systam System
Moded Functions Navigational Madel Funclions Mavigational
A A
L Y
State Management nm_\] State Management Data
“Session Bean” / “Session Bean™ Object Java/CH
'] &
v L) Y 1
Model Component in RPGLE Free Model Component in Java or CF
Exposed | Exposed | Exposed | Exposed | Exposad Exposed | Exposed | Exposed | Exposed | Exposed
Procedure| Procedure| Procedure | Procedure | Procedune: Methed | Method | Method | Method | Method
Initialize Pre- Process Pre- Procass Initialize Pre- Process Pra- Process
Program | Display Display Program | Display Display
Process Process.
SCR1 SCRI1 SFL1 SFL1 SCR1 SCR1 SFL1 SFLI
SubrX | SubeY | SubeZ FuncX | FuncY | FuncZ

&
Y
Database O Components

A Visual Guide to Automated MVC Reengineering

By using X-Migrate (formerly X-Redo) as a final processing step, the restructured
RPG code may be converted to Java or C#. Additionally, the database may be
converted from a DDS-based definition to a SQL-based definition, so that it may be
migrated to another platform, if that is IT’s chosen direction.

By following this path of language conversion, several important advantages are
realized:

e The resulting code is organically suited to the new language; both Java and
C# are object-oriented and most commonly used in an MVC design pattern.

e Developers on either side of the conversion, the RPG developers, or the
Java/C# developers, are able to make sense of the conversion when
comparing functionality and code specifics, when questions or problems
arise.

* A bridge between existing staff skills and the old application, and new staff
skills and the new application is built into the conversion process. Because
the before and after components are both symmetrical and natural to the new
language, existing application domain knowledge is easily applied to the new
code.

	Three Steps (or maybe just TWO) to New & Improved System
	Why Reengineer?
	Some of the Goals of Reengineering can Include:

	Bad Practices of Reengineering- What Not to Do
	Bad Practices of Reengineering- Two Good Options
	Automated Restructuring and Modernization of Monolithic Legacy RPG Code
	Overview

	Restructuring RPG – The Details
	Converting Restructured RPG to Another Language

