
 D a t a b o r o u g h

A Visual Guide to Automated MVC
Reengineering

Steve Kilner

A Visual Guide to Automated MVC Reengineering

This guide has the fo l lowing sect ions:

1. Three Steps To New and Improved Systems
2. Why Reengineer?
3. Bad Pract ices of Reengineering – What Not To Do
4. Best Pract ices – Two Good Options
5. Automated Restructur ing and Modernizat ion of Monoli thic Legacy RPG Code

• Overview.
• Restructur ing RPG – the Detai ls.
• Convert ing Restructured RPG to Another Language.

While this page explains automated reengineering in the context of Databorough
products, i t also presents an essent ial strategy for IT organizat ions with legacy
RPG appl icat ions

T h r e e S t e p s (o r m a y b e j u s t T W O) t o N e w & I m p r o v e d S y s t e m

By first restructuring legacy RPG programs into a modern
architecture, new capabilities emerge to

● extend the life of RPG application - or -
● migrate to a new language and platform

A Visual Guide to Automated MVC Reengineering

Extract Design – The f irst step in any reengineer ing project is to recover as much
intel l igence from the exist ing appl icat ion as possible. X-Analysis has an amazing
amount of informat ion i t recovers about appl icat ions. For example, X-Analysis
generates the fol lowing numbers for one large scale ERP appl icat ion:

Restructure RPG – Restructur ing monoli thic RPG code into an archi tecture of
OO/MVC/REST brings numerous benef i ts, both for ongoing maintenance, i f the
system is to be retained, and for complete reengineering i f migrat ing to another
language, such as Java or C#.

Using Databorough’s X-Modernize tool, legacy, monol i th ic RPG programs can be
restructured into a modern archi tecture. Such a restructur ing results in the
business logic residing in exportable RPGLE/Free procedures. These programs
represent the model port ion of the architecture. X-Modernize also provides the
meta data for you to construct your own view and control ler components, which
may be in RPG, Java or C# for the control ler layer and DDS, JSF or .Net for the
view layer.

Convert Language (optional) – For organizat ions who have made a strategic
decis ion to migrate to a new language or platform, Databorough’s X-Migrate
product (formerly X-Redo) completes the transit ion from restructured RPG into
another language, such as Java or C#.

An important benef i t of using the restructured RPG for the language conversion is
that i t faci l i tates br idging the knowledge gap between the RPG appl icat ion and the
new language appl icat ion. The new language appl icat ion retains the same essent ial
components as the restructured RPG appl icat ion thus enabl ing both RPG
developers and new language developers to easi ly compare code results.
X-Migrate also provides the extra step of creat ing the view and control ler
components in the target languages, Java, C#, JSF, .Net.

A Visual Guide to Automated MVC Reengineering

W h y R e e n g i n e e r ?

Typical RPG appl icat ions represent mil l ions of dol lars of investment over the years
of their existence.

Such appl icat ions typical ly contain many thousands of business rules , data
modeling rules and user interact ion rules. To attempt to rewrite so much
funct ional i ty from scratch would be a huge undertaking and can be great ly
expedited by making use of information from the exist ing appl icat ion.

Some of the Goals of Reengineering can Include:

• Obtaining the benefi ts of a more modern architecture, such as:
• Modular i ty.
• Loose coupl ing .
• Reusabil i ty
• Accessibi l i ty
• Distr ibutabi l i ty
• Scalabi l i ty

• Improving the appl icat ion’s maintainabi l i ty and responsiveness to business
needs. By untangl ing the accumulat ion of many years of modif icat ions and
restructur ing and refactor ing over ly complex, monoli thic code, maintainabi l i ty
can be signif icant ly improved

• Exposing funct ional i ty embedded within the appl icat ion so that a web
services, or SOA, architecture can be real ized

• Moving the appl icat ion to another language or platform more in l ine with
future direct ions of IT.

There is no single correct approach to reengineering – there are many opt ions, and
each organizat ion must decide which opt ion best f i ts i ts strategy and needs.

A Visual Guide to Automated MVC Reengineering

B a d P r a c t i c e s o f R e e n g i n e e r i n g - W h a t N o t t o D o

Do not design from scratch – You wi l l add huge amounts of r isk, cost and t ime to
your project. Your legacy system has vast amounts of proven, recoverable business
rules, data rules and appl icat ion def in i t ions – use them and save on money, t ime
and r isk.

Do not convert l ine by l ine – You think your current system’s maintenance is s low,
expensive and r isky? Wait t i l l there is no indiv idual, let alone an ent ire team, who
knows both your business and the new programming language.

A Visual Guide to Automated MVC Reengineering

B a d P r a c t i c e s o f R e e n g i n e e r i n g - Tw o G o o d O p t i o n s

Option 1: Recover rules to rewrite or purchase – Your legacy appl icat ion may
represent as much as mil l ions of dol lars of investment. I t ’s fu l l of t ime-tested
business rules, data relat ionships, appl icat ion boundaries and so on. You may well
want to improve al l those things, but chances are that the vast major i ty of this
design is st i l l good – use i t !

The recovered business rules and other information can be fed into:

• The requirements and design processes of a new system, or
• The funct ional i ty and gap analyses of packages being considered for

purchase

Option 2: Restructure code first, and then convert it – Before convert ing your
RPG appl icat ion to another language, f i rst restructure i t into a modern architecture
with character ist ics such as:

• Object or iented structure
• Model-View-Control ler, MVC, architecture
• Stateless, or REST, session management
• Free formatted coding, such as RPGLE/Free

By f irst restructur ing RPG into a modern architecture i t enables the exist ing team
with their exist ing ski l ls to understand and work with a more modern architecture.
I t also has the benefi t of improving the maintainabi l i ty and openness of the
appl icat ion.

5

A Visual Guide to Automated MVC Reengineering

Any subsequent conversion to another language, i f desired, results in a new
appl icat ion with the same component architecture as the or ig inal, restructured
appl icat ion, thus great ly improving understanding and manageabil i ty.

A u t o m a t e d R e s t r u c t u r i n g a n d M o d e r n i z a t i o n o f M o n o l i t h i c
L e g a c y R P G C o d e

Overview

Once X-Analysis has been used to recover design information, X-Modernize can
bui ld the restructured components in RPGLE/Free, and provide view and control ler
meta data. The meta data can be used to wr ite the view and control ler components
in the language of your choice, as shown below (RPGLE/Free shown as example in
diagram):

In this diagram, the monol i thic RPG program and i ts display f i le are restructured
into three components:

A Visual Guide to Automated MVC Reengineering

Model – this component is comprised of RPGLE/Free with al l code having been
reorganized into procedures that are exportable and may be cal led by other
components, specif ical ly the control ler component.

View – the ini t ial Databorough restructur ing process, as executed by X-Modernize,
provides the meta data necessary to manual ly code the view component. The view
component may be coded as exist ing display f i le DDS, or recoded into JSF or .Net.

Controller – l ike the view component, the ini t ia l restructur ing process provides the
meta data enabl ing the development of a control ler component in RPG , Java or
C#. This component controls the interact ion between user (the view) and the
funct ional i ty (the model).

Understanding what is generated by different Databorough products related to
reengineering-

Note: The X-Analysis module is also required inorder to bui ld the repository needed
to dr ive these funct ions.

R e s t r u c t u r i n g R P G – T h e D e t a i l s

By leveraging the intel l igence gathered in the X-Analys is repository, X-Modernize
can restructure monoli th ic, procedural RPG code into more manageable and useful
procedures.

The overal l architecture being created is:

• Object or iented, in so far as is pract ical in RPGLE
• MVC archi tected
• Stateless, making use of a state data management object, also known as a

session bean

A Visual Guide to Automated MVC Reengineering

A Visual Guide to Automated MVC Reengineering

View component – By design, the view component handles the UI data def ini t ions,
layout and user event def ini t ions. In the f irst pass of restructur ing, X-Modernize
provides meta data that can be used as design specif icat ions for developing the
view component in JSF or .Net.

Controller component – By design, the control ler component receives al l events,
whether system generated or user generated, such as funct ion keys, select ing
subf i le opt ions, etc, and invokes the appropriate procedure in the model
component. The control ler component also receives and retransmits the state data
management object, ensur ing that al l data needed to maintain state is preserved in
each user session. In the f irst pass of restructur ing, X-Modernize provides meta
data that can be used as design specif icat ions for developing the control ler
component in RPG, Java or C#.

Model component – The model component contains the essence of the
funct ional i ty of the or iginal RPG program. Al l business logic, such as that used for
loading data from f i les, prepar ing data for display, val idat ing data, preparing data
for output and other miscel laneous calculat ions are contained in the model
component.

Al l such funct ional i ty is organized into exportable procedures, which are cal led by
the control ler component, or anything else, i f desired. The procedures are
organized around the display of screen formats, such that for any given screen
format that is d isplayed in a user session, there is one procedure for preparing the
format for display, and another one for post-display processing, such as val idat ions
or data output.

State management data – In order to create a stateless architecture, a data object
is created which contains al l data necessary to maintain the state of the user ’s
session between screens. This data object is passed back and forth between the
control ler component and the model component.

C o n v e r t i n g R e s t r u c t u r e d R P G t o A n o t h e r L a n g u a g e

Once an RPG program or appl icat ion has been restructured, i t is opt imally
posit ioned for conversion to a more modern language, i f that is the direct ion of IT.

The point should be made, however, that restructur ing RPG may be an end strategy
in i tself , as the appl icat ion’s maintainabi l i ty and openness to SOA and other
interfaces is great ly improved.

If desired, however, the restructured RPG may undergo a further step of being
converted to Java or C#.

10

A Visual Guide to Automated MVC Reengineering

A Visual Guide to Automated MVC Reengineering

By using X-Migrate (formerly X-Redo) as a f inal processing step, the restructured
RPG code may be converted to Java or C#. Addit ional ly, the database may be
converted from a DDS-based defini t ion to a SQL-based def ini t ion, so that i t may be
migrated to another platform, i f that is IT’s chosen direct ion.

By fol lowing this path of language conversion, several important advantages are
real ized:

• The result ing code is organical ly suited to the new language; both Java and
C# are object-or iented and most commonly used in an MVC design pattern.

• Developers on ei ther s ide of the conversion, the RPG developers, or the
Java/C# developers, are able to make sense of the conversion when
comparing funct ional i ty and code specif ics, when questions or problems
arise.

• A bridge between exist ing staff ski l ls and the old appl icat ion, and new staff
ski l ls and the new appl icat ion is bui l t into the conversion process. Because
the before and after components are both symmetr ical and natural to the new
language, exist ing appl icat ion domain knowledge is easi ly appl ied to the new
code.

	Three Steps (or maybe just TWO) to New & Improved System
	Why Reengineer?
	Some of the Goals of Reengineering can Include:

	Bad Practices of Reengineering- What Not to Do
	Bad Practices of Reengineering- Two Good Options
	Automated Restructuring and Modernization of Monolithic Legacy RPG Code
	Overview

	Restructuring RPG – The Details
	Converting Restructured RPG to Another Language

