\V/

Databorough

Recovering Business Rules and Data Models

Steve Kilner

WHiTE PAPER

Table of Contents

EXECULIVE SUIMMATYceiiiiiiiiieciieeeiie ettt et e ettt e et e e et eesteeesstaeessseeessaeenssaeenssaeanssseeeeennssseeaeens
What 1S DeSIZN RECOVETY?...cueiiiiiiiiiieiieie ettt ettt ettt et e et e e bt e sebeesaeeennneeaens
Why Reverse Engineer or Recover the Design of an Application?...........ccccvvvevviiieriieenieeeeeieeee e,
SixX ConCeptual REASOMS.cc.uiiiiiiiiiiiiieie ettt ettt tte e te e st e enbeeeetbeeeenneeas
Twenty Three Practical REaSOMS.iiouiiiiiieiiie ettt e eeaaee s
What can be Recovered that's USEfUl?..........coouiiiiiiiiiiiiie e
Subdividing the Software into AppliCation ATEaS..........ceevvieeiiieeiiieeiieeeie e sereee e e e
Recovering the Data MOdEL.........cc.ooiiiiiiiiiiiiiece ettt sttt eaaeeaes
Recovering the Business RUIES.........ccviiiiiiiiiiiiciicce ettt e e e ee e e nees
Recovering BUSINESS PrOCESSES.ccuiiitiiiiieiieiiiieiie ettt ettt ettt ettt e sieeeteeenaeenseesaneaeenes
How can the Recovered Design be USEd?..........ooouiiieiiiiiiiiieeiieeeee et raeee e
Formatting and DEliVETy OPtiONS.cecuiieiieiiieriieiie it etteete et eite et te e et esiteebeeseeeeseesseeeseesaseaeenes
FoeINg PrOCESSES. ... viiiiiieiiiie ettt e e e et e et e e et e e e sbeeessteeensaeeensaeeessaeeenseeesnseeennsaeennseens
A Closer Look at Reengineering with X-ANalysSiS.........cccueriirriieriiiniienieeiieete ettt
Subdividing an Applications into SUb-APPIICAIONS......cc.eieruireriieeriie et e e
Recovering Data MOdEL..........oooiiiiiiiiioieeee et ettt ettt s
Recovering Business RUIE LOZIC........iiiuiiiiiiiiiiiicciie ettt e e
Recovering BuSINESS PrOCESSES.ccuiiitiiiiieiieiiieiie ettt ettt ettt ettt e sieestaesnaeenbeeennseeaens
RecoVEriNg USET INTEITACE.ceecuiiiiiiieeiee ettt et ettt e et e e e eessseeeennnsaaeeas

.2
.3

.6

.9

Recovering Business Rules and Data Models

Executive Summary

IT managers who are responsible for legacy systems are both stewards and
trustees of highly valuable corporate assets. In the IBM i world these assets
typically have a sunk cost, and a replacement cost, of millions, or tens of millions
of dollars. Accordingly:

« IT Managers are responsible for protecting the value of the legacy asset
* IT Managers are responsible for delivering a good return on the legacy asset

The challenges to these responsibilities are well known:

* Growing complexity of the applications over the years, making them slow,
costly and risky to maintain

» Disappearing knowledge of the features and rules of the application and how
they are implemented

* Overall manageability of the application becomes more and more difficult
while the demands only increase

Managers who do not address these challenges directly and aggressively create
latent, growing risks for their organization, and thus fall short in their roles as
stewards and trustees:

* The ability to respond quickly and cost-effectively to business needs
gradually degrades until an event triggers an enterprise-wide crisis

* The complexity of the system increases the probability of production defects
that have a material impact on enterprise customer relationships or financial
results

* The costs of maintaining the legacy system continually increase relative to
the value delivered, thereby depreciating the value of the legacy asset and
crowding out other IT opportunities

Legacy applications contain not only huge libraries of source code, they also
contain a vast amount of valuable enterprise knowledge.

It is through re-engineering and design recovery that IT managers can
successfully overcome the challenges of complexity and loss of knowledge. By
doing so they deliver greater IT responsiveness, higher quality system resources
and increasing value of the legacy asset. They also keep the enterprise well-
positioned for the eventual replacement of the legacy application.

This paper discusses the concepts of re-engineering and design recovery, how to
fit them into the management of legacy applications, and how to build legacy and
future success using Databorough’s X-Analysis Application Discovery product.

Recovering Business Rules and Data Models

What is Design Recovery?

Reverse engineering, re-engineering, design recovery, refactoring - what exactly is
the difference between all these terms?

It helps to step back and take a look at the big picture. In their paper, Reverse
Engineering and Design Recovery: A Taxonomy, authors Elliot Chikofsky and James
Cross make the case for some clear distinctions between these terms, starting at
the beginning:

Forward engineering - the process of moving from high-level abstractions and
logical, implementation-independent designs to the physical implementation of a
system.

Reverse engineering - the process of analyzing a subject (physical) system to
identify its components and their interrelationships, and create representations of
the system in another form or higher level of abstraction. In short, the reverse of
forward engineering. It is not to create a new system, but rather to describe an
existing system in another form or at a level higher than the source code.

Design recovery - a subset of reverse engineering in which domain knowledge,
external information, other documents or reasoning are added to the output of
reverse engineering to identify more meaningful higher level abstractions beyond
those obtained from direct examination of the system.

Whereas reverse engineering may reveal internal structures, components and
elements of the system, design recovery may additionally reveal intentions, goals
and actual architectural concepts and designs.

Refactoring - the process of restructuring a system or one of its components to
improve its internal "appearance", in a broad sense. By definition it does not
change any functionality, typically it changes its maintainability. Examples of this
are replacing go-to statements with structured operations, reducing the size or
complexity of components, or normalizing database designs.

Reengineering - the process of examining a system followed by refactoring it, i.e.,
reverse engineering followed by new forward engineering. The refactoring and
forward engineering may be to improve the existing system or create a new system
or both. Development of new functionality is often added into the reengineering
process, but is not, strictly speaking, reengineering.

In this paper we will assume that reverse engineering is being done against legacy
IBM i systems, and that there is likely also some design recovery being done, in
pursuit of a variety of possible purposes.

Recovering Business Rules and Data Models

Why Reverse Engineer or Recover the Design of an

Application?

The same paper mentioned in the previous section outlines six reasons for reverse
engineering. It is interesting to note that this paper, written about legacy systems,
is at this point a legacy paper, having been written in 1990. It is nonetheless
considered the original and authoritative statement on the subject, demonstrating
that many historical software problems are very persistent.

Six Conceptual Reasons

The six reasons for reverse engineering given in the paper are fairly general, but
useful to understand, and are recognizable to most experienced IT managers.
After reviewing them we will look at more specific uses of reengineering. The six
general reasons:

Cope with complexity - it is no secret that systems become more complex over
time and reverse engineering can shed light on that complexity and lead to its
mitigation.

Generate alternate views - creating and maintaining documentation is costly and
anything that can provide other insight into the system can be useful for
maintaining or reengineering it.

Recover lost information - systems often evolve to the point where there is
neither knowledge nor documentation of exactly what they do. Reverse
engineering and design recovery are processes to rebuild that knowledge.

Detect side effects - both defects in initial development and in subsequent
modifications may remain undetected indefinitely. Reverse engineering can help
discover those defects before they impact production usage of the system.

Facilitate reuse - widespread, thoroughly institutionalized reuse of software
components is perhaps a dream that has never been realized to the hoped-for
degree. Reverse engineering tools, if high quality and well-used, can greatly assist
in organizing software reuse.

Synthesize higher abstractions - this was a reason described in the paper being
discussed, but it's not yet come into existence as envisioned. It's interesting that
in 1990 software experts were expecting that specialized expert systems for
reverse engineering would be able to automatically deduce and express concepts
and abstractions about systems. If there are such expert systems, they are not in
widespread use as of 2010.

Recovering Business Rules and Data Models

Twenty Three Practical Reasons

While the foregoing is an interesting set of conceptual reasons for reverse
engineering, let's take a look at some fairly specific examples that may be closer to
home for many legacy IBM i system owners.

But first, before looking at a long list, let's define some categories. Most of these
practical uses fall into one or more categories:

* Management uses

. Design uses

. Maintenance uses

» Knowledge transfer or communication uses

The 23 practical uses:

1. Break down projects for enhancement or rewriting into smaller, more
manageable, less risky pieces

2. ldentify application and sub-application boundaries for interfacing to other
systems

3. Assist with developing coherent test databases for enhancement or
reengineering projects

4. ldentify changes needed for modernization of the database design

5. Analyze data availability and structure for building Reporting/Bl/Data
Warehousing applications

6. Measure the referential integrity of the database
7. Assist with designing archival databases

8. Map business processes as UML through analysis of the application source
code

9. Harvest model-view-controller design components from legacy applications for
reengineering

10.Centralize the logic, i.e., business rules, in an application
11.Populate a rules engine system as part of refactoring or reengineering efforts

12.Inventory and document functionality in existing applications for comparison to
functionality in packaged products being considered for purchase

13.Develop test cases for regression testing as part of enhancement, refactoring
or reengineering efforts

14.Audit critical business rules for regulatory or quality control purposes
15.Create system documentation specifically for use by business analysts

16.Add information and insight to the planning process of projects for
enhancement or reengineering projects

17.Feed into automated modernization tools, such as Databorough's
Reengineering suite

Recovering Business Rules and Data Models

18.Inform the design of projects for enhancement or reengineering projects
19.Inform the design of projects for interfacing or SOA "wrapping"
20.Facilitate discussions with users for developing new requirements

21.Document the system for disaster planning, or audit and due diligence
purposes

22.Facilitate reuse of existing functionality
23.Facilitate application support and enhancement design and programming tasks

No doubt there are more uses, but this list should make it clear that reverse
engineering and design recovery can play a significant role in improving IT
processes.

Recovering Business Rules and Data Models

What can be Recovered that's Useful?

In the book, Legacy Systems: Transformation Strategies, by William Ulrich, the
author makes the case for four critical tools and their information output that aid
reverse engineering and reengineering projects:

* Legacy Componentization - attempts to bring more modularity to legacy
procedural code; ideally this produces a hierarchy of systems, subsystems and
components

» Data Reverse Engineering - captures physical and logical data definitions;
typically such a tool goes beyond merely looking at data definition source code
and may also inspect program code and data content to dig deep into the data
model structure

* Business Rule Capture - identifies and slices logic paths to extract business
logic; typically an inventory is built of business rules which are traceable back
to their source code implementation

* Transaction Flow Analysis - captures information and produces
documentation that describe system flows; typically in UML Action or Sequence
diagrams

Databorough's X-Analysis Application Discovery product provides all of the
functionality mentioned above using the following terminology, and adds one more
useful function:

+ Subdividing the software into application areas and sub-application areas
* Recovering the data model

» Recovering the business rules

* Recovering business processes

» Recovering the user interface

In the remainder of this paper we will drill down further and further into what X-
Analysis provides and how it facilitates this type of work. Let's first look at each of
these areas in a little more detail.

Subdividing the Software into Application Areas

In one of the authoritative books on working with legacy code, Working Effectively
With Legacy Code, author Michael Feathers describes what he calls "The Legacy
Code Algorithm":

+ Identify change points

. Find test points

* Break dependencies

* Write tests

» Make changes and refactor

Recovering Business Rules and Data Models

While this process is intended for maintaining legacy code it is conceptually just as
appropriate for any sort of reverse engineering or reengineering effort. What is
interesting to note is that that three of the steps of this Legacy Code Algorithm
relate to finding critical locations of boundaries in the code. As any experienced
legacy developer knows, it can be extremely difficult, and seemingly impossible to
separate a legacy application into sub-applications.

And why is this important? As we saw in the previous section this can be important
for such activities as breaking up large projects into smaller ones, creating
interfaces into subsystems, devising manageable test plans, designing SOA-type
wrappers, etc.

Recovering the Data Model

Throughout its history the IBM i has always supported a relational database, but it
has never provided a complete set of data modeling facilities. A good data
modeling facility provides information to application managers and designers at
four levels:

 Data definition - the physical files and their fields, plus logical files, or views

» Data relationships - the foreign key relationships that exist between files

» Data integrity - the actual use of the data definitions and data relationships in
practice and reality

* Application usage - where and how the data definitions and relationships are
used throughout the application software

Recovering and understanding the complete data model is useful for a number of
activities, such as modernizing the database, interfacing to other systems,
developing test data and so on.

Recovering the Business Rules

Some estimates put business rules as comprising around 30% of the content of
legacy systems that are coded with procedural languages, such as RPG. The flip
side of the coin is that those business rules comprise perhaps 80% of the value of
such legacy systems. Unfortunately, with legacy procedural systems the business
rules are tangled in with screen management, control flow and database access
code. Extracting the core value of a legacy system is a major challenge.

The essential tasks involved with recovering business rules are:

* Identifying and scoping business rules in the source code

* Correlating instances of the same business rule coded in different areas and
recognizing them as being the same rule

* Building an indexed repository of the business rules
* Cross referencing the repository business rules back to the source code

7

Recovering Business Rules and Data Models

Recovering the business rules and building a repository of them assists with such
activities as centralizing key logic, aiding the design of reengineered systems,
facilitate code reuse. Etc.

Recovering Business Processes

Business process recovery and modeling take place on a couple of levels: 1)
identifying what business processes are encoded in a system, and 2) identifying
what comprises a given business process. Creating a list of business processes is
more relevant to the first of the four sections, Sub-dividing the Application. Here
we are more concerned with describing what goes on inside of business processes.

Such descriptions are often represented as UML diagrams, such as Activity
Diagrams or Use Cases Diagrams. The information obtained from this modeling
typically includes:

* Descriptions of user-driven or system-driven activities
* Descriptions of the flow of control between these activities

* Correlation of these activities to the system implementation, such as particular
screens or business rules

Knowledge of the business processes in a system are useful for helping analysts
and programmers define enhancements to the system, for communicating with
users in terms more understandable to them, and for providing a basis for
reengineering projects.

Recovering Business Rules and Data Models

How can the Recovered Design be Used?

Formatting and Delivery Options

Most design recovery data in Databorough's X-Analysis Application Discovery
product can be directly exported from the user interface as:

« PDF files
« Excel spreadsheets

Design recovery data that relate to UML specifications is also available in XML-
formatted UML files.

Additionally, much of the data relating to application areas, business rules and the
data model is available in IBM i tables which are accessible to X-Analysis users.
See the X-Analysis Technical Guide for more information.

Feeding Processes

Design recovery data can be used to facilitate the population and development of
reengineering designs in several ways:

* The recovered IBM i data model can directly feed the specifications of a new
data model using standard DB/2 SQL.

e The recovered business rules can be converted and populated into a business
rules management system such as IBM's iLog or JBoss BRMS

* The recovered UML specifications can be fed into any UML-based tool such as
IBM Rational Rose, Eclipse, Microsoft Visio and so on.

Recovering Business Rules and Data Models

A Closer Look at Reengineering with X-Analysis

Subdividing an Applications into Sub-Applications

Entire legacy applications are often too large to effectively comprehend or
implement wholesale changes. For this reason it is often necessary or helpful to
sub-divide a system into application areas. The reasons and specifications for
these may change with time. X-Analysis provides facilities for subdividing an
application area into groups of objects that meet user defined selection criteria.
These criteria might be based on functions or even generic names. X-Analysis then
uses its internal sophisticated cross-reference information and Data Model
relationships to include, automatically all related elements such as programs,
displays, or files in the application area.

Application area filters can then be used through the X-Analysis Solution Sets to
view, document or reengineer as opposed to individual objects.

%5 Appication Arsa Diagram 17 =
Application Area Diagram for KANSCDXA el

A - Accounting Main ACCOUNTS - Company Accounts - Peter test |

[STOCK - Stock System

10

The Application Area diagra

Recovering Business Rules and Data Models

m in X-Analysis is

interactive and by clicking on

different parts of your system you can see the relationships between either all

parts or just the area you've clicked on and the areas it relates to.

You can see in

the following image the options that went into defining a sample application area,
here, centered around one file, CUSF.

ACCOUNTS - Compary Accounts - Peter test

MVCPROCESS ORDERS
1 1]
i
E@Appllcaﬂcn Area Rules for A L;ﬂ
Seq.No. | Selection Ohbject Type ObjectCom.. | ObjectMame | Librans Com.. | Library Name | Incl Ref)
E 10 Select File Equal CUSF All
3 AA Seq. No.
oph Selection Select]
Calir : —
BCt Object Type IFﬂe E
JBCC Object Companson | Equal E] Object Mame CLSF
B
BC Library Companson 3 Librany Narne
ﬁl | Incl RefdPgms Al ~| incl RefdFiles No]
4 4 =l
BCE Incl. Crwning Files Immuuﬁue E Incl. Dependent Files | Cumulative |
3 i
BClAw FRLA R FIIU § WA fd WAALAA Pl du [l_]pm] | Cloze |
Tl hdels soibn Purddain Palal ysses

7 Area

11

Recovering Business Rules and Data Models

Recovering Data Model

The relational database model of an enterprise application is an extremely powerful
piece of information and potentially valuable asset to the organization. Unlike 2E
systems, for almost all RPG or COBOL applications running on System i, there is
no explicit data model or schema defined. By the term model, we are referring to
the foreign key or relational model, not just the physical model of the database.
The relational model or architecture of the database can be reused in a number of
scenarios including:

* Understanding application architecture

 Data quality analysis - referential integrity testing
* Automated test data extraction, masking and aging
* Building Bl applications or Data warehouses

X-Analysis has the unique capability of automatically deriving the explicit system
data model from a legacy RPG, COBOL or 2E application. Let us have a look at this
and the model reuse capability in a bit more detail.

Deriving the Legacy Data Model - X-Analysis accomplishes this by analyzing the
data structures of the physical and logical files, but it then programmatically traces
these through all programs that use them to verify the existence of any cross-file
relationships or foreign keys. These derived relationships can also be verified by
the product by performing an integrity check on the actual data. This ensures that
the data of the dependent file makes a reference, to data records from the owning
file. In this way, the automated reverse engineering can fully extract the data model
from even the most complex legacy system.

In the following image we see one section of the data model diagram, and in this

case, the CUSTS file has been clicked on, showing all the files that have parent,
child or foreign key relationships with it.

12

Recovering Business Rules and Data Models

&1 DataModel Diagram 51 =0
Data Model Diagram for *ALL, Total Dbjects: 44 2@~ [[l-[| 3 -
STEGRP3 TRNHST EVFEVENT GENTAB FROORDS
Steak Gravp 3 Traraation HEtory Ganeiz Tabls Fle Prafied Ordars
CUSTS ORDSTS DISTS LISTS ORGS
Purchases -Order-hitod-gesernbion Distributors Lists Organisations

TRITYP N tuse NAMESIDX PTVPES cusGRre

Transachion bype Stes] Mames Index Products Customer Groups
description [~
STOMAS Asmﬂs\ CNTACS x"“‘*-»x SLMEN DELIVA

Store Master Status fle \ Cantacts Ym Delvery Areas

STKMAS STKBAL CONHDR CONDET PROJECT
Product Master Stodk Balances Coniract Header Contract Detal Projects

Taking this a step further for the CUSTS file we use the context menu to view its
access paths:

CUSTS
Prchiasss
XWEBCCD CLrinmer
L CUSTSLA CUSTSL2 [CUSTSL3 CUSTSL4
by Cussi Grp Cusioemear by Fegresentatve Customer by Cusno Fepresentatg by Distributor Customer
WWERCD Cusrp PERSON Rop CLEND Prospact Mo =g Distrbutor
AWBCIOD CusScamar AWBCID Customer PERSON Rep [m-acm Customen
] CUSTSLS
by Sxatmment Cusomer
WD Stafprrant Aorount
WBOOD Custoemar

With another click we can drill down into the foreign key relationships:

13

Recovering Business Rules and Data Models

Z7 Data Model Diagram 53 = 8
Data Model Diagram for CUSTS, Total Objects: 8 HE- M- -
1 EUSF 2 CUSGRP
Sites stomer Groups

5 CONHDR]

Contract Haads

7 . TRNHST

ransaction Histony

Test Data for Modernization & Maintenance Projects - Creating and managing test
data can be a labor-intensive and costly task. As a result of this, many companies
resort to creating copies of entire production systems. This approach in itself can
produce its own set of problems, such as excessive storage demands, longer test
cycles, and often a lack of current data for testing. The relational data model is
used to automatically extract records related to those specifically selected for
testing. In this way smaller, accurate test subsets can be extracted quickly and
respectively, with additional functionality for scrambling sensitive production data
and aging the dates in the database forwards or backwards after testing.

Recovering Business Rule Logic

Traditionally business analysts find the business rules for a new application by
organizing workshops and interviews and then manually writing use cases to
describe the rules as text. However, for a legacy application all the rules are
already fully prescribed in the application code - you just have be able to retrieve
them.

The challenge is that in the vast majority of legacy RPG and COBOL programs, the
business rule logic is mixed in with screen handling, database 1/O, and flow
control. Harvesting the business rules from legacy applications therefore requires
knowledge of the application and the language used to implement it, plus a lot of
time to identify the rules, define their full scope, document them and organize
them. Additionally, these rules need to be narrated and indexed, thus providing
critical information for any analysts, architect or developer charged with enhancing

14

Recovering Business Rules and Data Models

or rebuilding a legacy application. The task of harvesting business rules is
therefore a highly skilled, labor-intensive, and costly exercise for any organization.

X-Analysis accomplishes this task by automatically scanning RPG and COBOL
programs and 2E models programmatically. It then separates out rule code from the
body of the application and identifies, indexes, narrates, and stores business rule
logic code into a structured, usable repository. In the final part of the process, it
supplies appropriate text narratives to describe these harvested rules.

For a given application area, or sub-application, it's this simple:

(#8544 - Accounting Main_

£ acco application Area Options 3
£ mycer : :

G
£C rLan Export Options 3
B2 PRINT

@[SALES Annotate o

@[: sTOCH Document Application Area

=
z
=

Data Management Options L4
i, xanacox — :
ﬂﬁ. % AN4ACDX Re-engineering Options 4

MR XAN4CDXE Generate Difference Analysis
[F'!- XAMACDXE Display Difference Analysis

sion Informat 4dit Cptions »

n Items Desian R Opti ,
esign Recover ons

ame 2 R

Once the rules are derived they can be viewed in summary form:

Business Rules 17 ;ﬂ Variable Where U DIE Screen Fields ﬁ Screen Action Di u@ Data ContentDia | — O

Business Rules for MYCPROCESS, Mumber of Lines: 87 = [
Source Member Rule Mo, Field File Rule A
CUSTMMT 1 50002 XWCTFST CUSTS Yalid field values are: "', "y', 'M'
CUSTMMNT 1 50003 CUSMO CUSF Field range is from 0 to 99993,
CUSTMNT 1 Q0001 DISTS not found on Distributors
CUSTMMT 1 0ooa2 CUSF not found on Sites
CUSTMMNT 1 00003 XWBCCD COMHDR Invalid customer number,
CUSTMMNT 1 o004 ¥WBCCD CUSTS Record already exists,
CLUSTMMT1 00005 XKWGEETH CUSTS You must enter the customer name,
CUSTMMNT1 0000s CUSGRP Customer group does not exist
CUSTMMNT 1 00007 SLMEM Invalid salesman.
CUSTMMNT 1 00003 DISTS The distributar is invalid,
CUSTMNT 1 Q0oos KWEIVA CUSTS Balance exceeds credit limit
CUSTMMNT 1 Q0010 CLISMHO CLISF Customer Mumber Zera Is Invalid
CLUSTMMNT1 ooo11 CLSF Customer Mot Found
CUSTMMNT 1 ooo12 XWBCCD COMHDR Debtor = blank L

15

Recovering Business Rules and Data Models

In this view the business rules can be viewed in English form, as shown, or as
pseudocode.

Business rules can also be optionally viewed inline in the source code from which
they are derived:

WWCCONHDR 53
Source List of WWCONHDR in XAN4CDEM/QRPGLESRC, Lines: 711, View Level: 5

B-EHFEE-P-r-b SEYRN-88R-

s e L e e L e e e e T e e + o
C#* WHEN ADDING CONTRACT MUST WOT BE ZERC
ROOD18C* Contrat =
C MOVE i *IN%9
C MOVE 1 *IN40 11
C ¥ E 10 M5GID
C 132
RO0020C* Contract not found on Contract Header
C *TN36 IFEQ 1 Be——————e 02
C EXWORDN SETLL CONHDR =R]
RO00D21C* exact match found for Contract on Contract Header
C *INS99 IFEQ ' B-—————- 03 i
< >

Note that the description of the business rules is automatically generated it is not
lifted from existing comments. All the lines in purple have been derived by X-
Analysis in the example above. Also note that these Business rules comments are
not added into to the RPG source but retained in the X-Analysis repository and
integrated into the view on demand.

The business rule repository can then be used programmatically to generate new
code, enhance the built-in documentation and work in combination with cross
referencing and annotation capabilities to research the application. It may also be
used by developers as the necessary input for specification development, whether
for new applications or for modifications to the current system.

Once we have derived business rules we can now view the code in multiple ways:
the normal source view, a pseudocode view, and a business rule repository view:

16

Recovering Business Rules and Data Models

05&6.00 C FAEM *ZEROS " TEes s

0566.98 RODDL6C* CUSPRM <> zero 3 RO0016 CUSPRM <> zero
0569.00 c CUSPRM IFNE *ZEROS If CUSPRM <> *ZEROS
0570.00 o MOVE CUSPRM CUSNO = CUSPRM
0571.00 C ENDIF £l Endif

0572.00 c SFIELD WHENEQ 'SWENC—— When SFIELD = "SWENCD®
05732.00 C CALL "CUSGR_| & Call "CUSGESEL
DE?Q.DD C PARM ; iif B WWhoamn SEFETETN — Taomanhybhe "
£] m > ._(I :

Susiness Fukes for CUSTHINT 1, Mumber of Lines: 25

Source Member | Rule Mo, Field Fil Rule

CUSTMNT 00 ;

CLSTMIMT 1 00017 CIUSGRP not found on Customer_Groups
CLUSTHMNT 1 Q0018 SLMEM riat fourd on Salespersons
CLSTHINT L Qo019 DISTS ot found on Distributors
CLETMVNT L S0001 KWEDME CILETS Field range is from 0 to 999599999,
CLISTNT SO0 WWETST ORTS Vabd field val s are: "' "N

There is also a full panel view of pseudocode which can be used for reengineering
or other analysis purposes.

Seq No PSEUDC CODE

D34D‘UD ft***t****t***t****t***t******t*ttt*tttttttttttttttttttttttttttttttt
0341.00 A% If no customer number entered

0342 .00 If (SWBCCD equal to *BLANKS)

0343.00 /*

0244.00 /* et to ADD mode

0245.00 Evaluate *IN96 = *ON

0348.00 Clear by Representative/Customer

0347.00 /

0343.00 Else

03249.00 /*

0350.00 /* et to CHANGE mode

0351.00 Evaluate *IN95 = *ON

0352.00 /*

0353.00 Read by Representative/Customer using SWBCCD with no lock<99|66(=>

17

Recovering Business Rules and Data Models

Recovering Business Processes

The objective of recovering business processes is to help sketch application
designs and to make such sketches portable and reusable in other IDE's such as
Rational, Borland, MyEclipse, etc. The three diagrams automatically generated by
X-Analysis are:

Activity Diagram - Activity diagrams illustrate the dynamic nature of a system by
modeling the flow of control from activity to activity. An activity represents an
operation on some class in the system that results in a change in the state of the
system. Typically, activity diagrams are used to model workflow or business
processes and internal operation. X-Analysis produces these automatically either
from a single program with multiple screens, or a group of programs. Each activity
in the diagram represents a usable screen format in the RPG program. A user can
also view the extracted Business Rules, relevant to that particular activity/format
directly from within the diagram.

%o Ohiject List [d] CUSTMNT 1-activity,umlact &3 Tl 1

q

CUSTMNTL{Customer D etail Maintenance)

/.\

ZZFT01 - Customer Detail Maintenance ZZFT02 - Customer Detail Maintenance
h th
Print Customer Detai Cistomer Site Selectig

- Print Customer Detail

rh

Customer Site Seldction

ZZCTL - Customer Site Selection

rh

18

Recovering Business Rules and Data Models

Each activity in a diagram has a great deal of information behind it which can be
drilled down into by right clicking:

|eh i1 Add Note h

Mﬂmﬂm Eie , 7 -

“__._.—-—"'_'_'_'_'_H_._'_F Falt '

Customer Detal Mantenance |

Formak k
Filters k

™| Show Properties YWiew

Function Logic Screen Source Code
Chass Diagram
o — o Data Content
el o Fropertias Screen Ackions
fior Action> 22CNF1 - Work with Customers ScreenfReport Design
Migrabed Logic
LT Wahse Business Rules
= M Updabe Function
Behavior Mors Info
Chent Dependency
Ircanifg <" eConkral Flot Comporent Documenter
In Interruptible Region Aunnokabe

i Brawrbirbnn

Use Case Diagram - Use Case Diagrams model the functionality of system using
actors and use cases. Use cases are services or functions provided by the system
to its users. Auto-generated from X-Analysis, this can be used as an alternative
view to the Activity Diagram, and also has drill-down capabilities for viewing
extracted Business Rules.

2e Object List

Palette L4

1 [}3 Select
&, Zoom
[Note -

Client

[== UML Camman

[~ Instance

[= Component

1 [.= Deployment

[= Use Case

[~ Class

[.= Composite Struckure
[== Geometric Shapes

[= Java
< 5 = Weh Service

Customer Detail Maintenance (51)

Sales Cond

19

Recovering Business Rules and Data Models

Recovering User Interface

The screens of a legacy application are a classic example where the design is
useful in a modernization context, and the code is not. All modern IDE's provide
powerful Ul development tools. Modern Ul standards and preferences for style and
technology also vary from project to project. The sheer number of screens in a
legacy application presents a logistical problem in recreating them manually, even
with the cleverest developers and best tooling. X-Analysis lets you see what the
legacy screen looked like without having to run the application which is a great
time saver for people who haven't been involved with the original application:

Screen Design,/Report Layout For CNTCMAINTD

Dizplay file : CNTCMAINTD
Contacts Maintenance Databorough Ltd.

Teleph
aw. No .

ord_format(s)

Screen designs of legacy applications are not just about look and feel, there are
attributes, and logic embedded which from a design point of view is relevant, no
matter what technology being used to implement them. These are:

Formats/Layouts - Some screens may benefit from amalgamation or redesign, but
table edits, and non-transaction type screens will largely remain the same, if not
identical in layout.

Actions - whether from sub-file options, command keys, or default enter actions,
these often represent an important part of the usefulness of an application design.
The mechanisms used to offer or invokes these calls may change, but where they
go logically and what parameters they pass will largely remain consistent.

Fields/Files/Attributes - What fields are on what screens, and where the data
comes from is a requirement in any system development. Attributes of a field can
also help determine what type of controls might be used in a modern Ul. For
example, a Boolean type might be implemented with a check box, a date with a

20

Recovering Business Rules and Data Models

date prompt. Again, these are simple enough to edit in modern IDE's, but the
volume associated with any large legacy application modernization can make this
work prohibitive.

Data Model Mapping - Validations and prompting mechanisms that ensure
referential integrity in legacy applications can also be vital to extract. This is both
to implement referential integrity and to provide design information for building
modern prompt or selection controls such as drop downs or lists.

Naturally, it will be desirable to redesign some Ul's completely. For those programs
and screens where this is not the case, the design, and mapping information can
be used directly in the new version of the application, even though the Ul code has
been discarded.

X-Analysis extracts User Interface design information as described above and
stores it as meta-data in the X-Analysis repository. This is can be used as
reference documentation for rebuilding Ul's manually, or for programmatically
regenerating new View and Controller artifacts in the chosen new technology.
X-Analysis also has reengineering features which can generate a JSF/Facelets Ul.
The designh meta-data can also easily be used to generate new interfaces using any
technology such as EGL, Ajax, RCP, C#, VB or even RPG.

21

Recovering Business Rules and Data Models

Design recovery and reverse engineering provide great productivity benefits for
numerous tasks relating to legacy applications:

* Better organizational understanding and communication of system capabilities
* Improved enhancement and support of the legacy system

* Improved processes for modernization, restructuring or reengineering

+ Better management of all the above work activities

Databorough's X-Analysis Application Discovery product assists IT organizations
with these tasks by providing proven, rich information recovery of all fundamental
aspects of reverse engineering to aid in the overall design recovery process:

* Subdividing the software into application areas
* Recovering the data model

« Recovering the business rules

» Recovering business processes

“You cannot fully use, improve or replace what you have, until you know what
you have.”

Steve Kilner
© Databorough

22

	Executive Summary
	What is Design Recovery?
	Why Reverse Engineer or Recover the Design of an Application?
	Six Conceptual Reasons
	Twenty Three Practical Reasons

	What can be Recovered that's Useful?
	Subdividing the Software into Application Areas
	Recovering the Data Model
	Recovering the Business Rules
	Recovering Business Processes

	How can the Recovered Design be Used?
	Formatting and Delivery Options
	Feeding Processes

	A Closer Look at Reengineering with X-Analysis
	Subdividing an Applications into Sub-Applications
	Recovering Data Model
	Recovering Business Rule Logic
	Recovering Business Processes
	Recovering User Interface

	Summary

