
 D a t a b o r o u g h

Recovering Business Rules and Data Models

Steve Kilner

WHITE PAPER

Table of Contents
Executive Summary...1
What is Design Recovery?...2
Why Reverse Engineer or Recover the Design of an Application?...3

Six Conceptual Reasons..3
Twenty Three Practical Reasons..4

What can be Recovered that's Useful?...6
Subdividing the Software into Application Areas...6
Recovering the Data Model...7
Recovering the Business Rules...7
Recovering Business Processes...8

How can the Recovered Design be Used?...9
Formatting and Delivery Options..9
Feeding Processes..9

A Closer Look at Reengineering with X-Analysis...10
Subdividing an Applications into Sub-Applications...10
Recovering Data Model..12
Recovering Business Rule Logic...14
Recovering Business Processes...18
Recovering User Interface...20

Summary..22

Recovering Business Rules and Data Models

E x e c u t i v e S u m m a r y

IT managers who are responsible for legacy systems are both stewards and
trustees of highly valuable corporate assets. In the IBM i wor ld these assets
typical ly have a sunk cost, and a replacement cost, of mil l ions, or tens of mil l ions
of dol lars. Accordingly:

• IT Managers are responsible for protecting the value of the legacy asset
• IT Managers are responsible for delivering a good return on the legacy asset

The chal lenges to these responsibi l i t ies are well known:

• Growing complexity of the appl icat ions over the years, making them slow,
cost ly and r isky to maintain

• Disappearing knowledge of the features and rules of the appl icat ion and how
they are implemented

• Overall manageability of the appl icat ion becomes more and more diff icult
whi le the demands only increase

Managers who do not address these chal lenges direct ly and aggressively create
latent, growing risks for their organizat ion, and thus fa l l short in their roles as
stewards and trustees:

• The ability to respond quickly and cost-effectively to business needs
gradual ly degrades unt i l an event tr iggers an enterpr ise-wide cr is is

• The complexity of the system increases the probabi l i ty of product ion defects
that have a materia l impact on enterpr ise customer relat ionships or f inancial
resul ts

• The costs of maintaining the legacy system continual ly increase relat ive to
the value del ivered, thereby depreciat ing the value of the legacy asset and
crowding out other IT opportunit ies

Legacy applications contain not only huge l ibrar ies of source code, they also
contain a vast amount of valuable enterprise knowledge .

I t is through re-engineering and design recovery that IT managers can
successful ly overcome the challenges of complexity and loss of knowledge . By
doing so they del iver greater IT responsiveness, higher qual i ty system resources
and increasing value of the legacy asset. They also keep the enterpr ise well-
positioned for the eventual replacement of the legacy appl icat ion.

This paper discusses the concepts of re-engineering and design recovery, how to
f i t them into the management of legacy appl icat ions, and how to bui ld legacy and
future success using Databorough’s X-Analysis Application Discovery product.

1

Recovering Business Rules and Data Models

W h a t i s D e s i g n R e c o v e r y ?

Reverse engineering, re-engineering, design recovery, refactor ing - what exact ly is
the difference between al l these terms?

It helps to step back and take a look at the big picture. In their paper, Reverse
Engineer ing and Design Recovery: A Taxonomy, authors El l iot Chikofsky and James
Cross make the case for some clear dist inct ions between these terms, start ing at
the beginning:

Forward engineering - the process of moving from high- level abstract ions and
logical, implementat ion- independent designs to the phys ical implementat ion of a
system.

Reverse engineering - the process of analyz ing a subject (physical) system to
identi fy i ts components and their interrelat ionships, and create representat ions of
the system in another form or higher level of abstract ion. In short , the reverse of
forward engineering. I t is not to create a new system, but rather to describe an
exist ing system in another form or at a level higher than the source code.

Design recovery - a subset of reverse engineering in which domain knowledge,
external information, other documents or reasoning are added to the output of
reverse engineering to ident i fy more meaningful higher level abstract ions beyond
those obtained from direct examinat ion of the system.

Whereas reverse engineer ing may reveal internal structures, components and
elements of the system, design recovery may addit ional ly reveal intent ions, goals
and actual architectural concepts and designs.

Refactoring - the process of restructur ing a system or one of i ts components to
improve i ts internal "appearance", in a broad sense. By def ini t ion i t does not
change any funct ional i ty, typical ly i t changes i ts maintainabi l i ty. Examples of this
are replacing go-to statements with structured operat ions, reducing the size or
complexity of components, or normaliz ing database designs.

Reengineering - the process of examining a system fol lowed by refactor ing i t , i .e. ,
reverse engineering fol lowed by new forward engineering. The refactor ing and
forward engineering may be to improve the exist ing system or create a new system
or both. Development of new funct ional i ty is often added into the reengineering
process, but is not, str ict ly speaking, reengineering.

In this paper we wi l l assume that reverse engineering is being done against legacy
IBM i systems, and that there is l ikely also some design recovery being done, in
pursuit of a variety of possible purposes.

2

5

Recovering Business Rules and Data Models

W h y R e v e r s e E n g i n e e r o r R e c o v e r t h e D e s i g n o f a n
A p p l i c a t i o n ?

The same paper ment ioned in the previous sect ion out l ines six reasons for reverse
engineering. I t is interest ing to note that this paper, wri t ten about legacy systems,
is at this point a legacy paper, having been writ ten in 1990. I t is nonetheless
considered the or iginal and authori tat ive statement on the subject, demonstrat ing
that many histor ical software problems are very persistent.

Six Conceptual Reasons

The six reasons for reverse engineering given in the paper are fair ly general, but
useful to understand, and are recognizable to most exper ienced IT managers.
After reviewing them we wil l look at more specif ic uses of reengineering. The six
general reasons:

Cope with complexity - i t is no secret that systems become more complex over
t ime and reverse engineering can shed l ight on that complexi ty and lead to i ts
mit igat ion.

Generate alternate views - creat ing and maintaining documentat ion is cost ly and
anything that can provide other insight into the system can be useful for
maintaining or reengineering i t .

Recover lost information - systems often evolve to the point where there is
neither knowledge nor documentat ion of exact ly what they do. Reverse
engineering and design recovery are processes to rebui ld that knowledge.

Detect side effects - both defects in in i t ial development and in subsequent
modi f icat ions may remain undetected indef ini tely. Reverse engineering can help
discover those defects before they impact product ion usage of the system.

Facilitate reuse - widespread, thoroughly inst i tut ional ized reuse of software
components is perhaps a dream that has never been real ized to the hoped-for
degree. Reverse engineer ing tools, i f high qual i ty and well-used, can great ly assist
in organizing software reuse.

Synthesize higher abstractions - this was a reason described in the paper being
discussed, but i t 's not yet come into existence as envis ioned. I t 's interest ing that
in 1990 software experts were expecting that special ized expert systems for
reverse engineering would be able to automatical ly deduce and express concepts
and abstract ions about systems. I f there are such expert systems, they are not in
widespread use as of 2010.

3

Recovering Business Rules and Data Models

Twenty Three Practical Reasons

While the foregoing is an interest ing set of conceptual reasons for reverse
engineering, let 's take a look at some fair ly specif ic examples that may be closer to
home for many legacy IBM i system owners.

But f i rst , before looking at a long l ist , let 's def ine some categories. Most of these
pract ical uses fal l into one or more categories:

• Management uses
• Design uses
• Maintenance uses
• Knowledge transfer or communicat ion uses

The 23 pract ical uses:

1. Break down projects for enhancement or rewrit ing into smaller, more
manageable, less r isky pieces

2. Ident i fy appl icat ion and sub-appl icat ion boundar ies for interfacing to other
systems

3. Assist wi th developing coherent test databases for enhancement or
reengineering projects

4. Ident i fy changes needed for modernizat ion of the database design
5. Analyze data avai labi l i ty and structure for bui lding Report ing/BI/Data

Warehousing appl icat ions
6. Measure the referent ial integri ty of the database
7. Assist with designing archival databases
8. Map business processes as UML through analysis of the appl icat ion source

code
9. Harvest model-v iew-control ler design components from legacy appl icat ions for

reengineering
10.Central ize the logic, i .e. , business rules, in an appl icat ion
11. Populate a rules engine system as part of refactor ing or reengineering efforts
12. Inventory and document funct ional i ty in exist ing appl icat ions for comparison to

funct ional i ty in packaged products being considered for purchase
13.Develop test cases for regression test ing as part of enhancement, refactor ing

or reengineering efforts
14.Audit cr i t ical business rules for regulatory or qual i ty control purposes
15.Create system documentat ion specif ical ly for use by business analysts
16.Add information and insight to the planning process of projects for

enhancement or reengineer ing projects
17.Feed into automated modernizat ion tools, such as Databorough's

Reengineering suite

4

Recovering Business Rules and Data Models

18. Inform the design of projects for enhancement or reengineer ing projects
19. Inform the design of projects for interfacing or SOA "wrapping"
20.Faci l i tate discussions wi th users for developing new requirements
21.Document the system for disaster planning, or audi t and due di l igence

purposes
22.Faci l i tate reuse of exist ing funct ional i ty
23.Faci l i tate appl icat ion support and enhancement design and programming tasks

No doubt there are more uses, but th is l is t should make i t clear that reverse
engineering and design recovery can play a s ignif icant role in improving IT
processes.

5

Recovering Business Rules and Data Models

W h a t c a n b e R e c o v e r e d t h a t ' s U s e f u l ?

In the book, Legacy Systems: Transformat ion Strategies , by Wil l iam Ulr ich, the
author makes the case for four cr i t ical tools and their informat ion output that a id
reverse engineering and reengineering projects:

• Legacy Componentization - attempts to br ing more modular i ty to legacy
procedural code; ideal ly th is produces a hierarchy of systems, subsystems and
components

• Data Reverse Engineering - captures physical and logical data def ini t ions;
typical ly such a tool goes beyond merely looking at data def ini t ion source code
and may also inspect program code and data content to dig deep into the data
model structure

• Business Rule Capture - ident i f ies and sl ices logic paths to extract business
logic; typical ly an inventory is bui l t of business rules which are traceable back
to their source code implementat ion

• Transaction Flow Analysis - captures information and produces
documentat ion that describe system f lows; typical ly in UML Action or Sequence
diagrams

Databorough's X-Analysis Appl icat ion Discovery product provides al l of the
funct ional i ty mentioned above using the fol lowing terminology, and adds one more
useful funct ion:

• Subdividing the software into appl icat ion areas and sub-appl icat ion areas
• Recovering the data model
• Recovering the business rules
• Recovering business processes
• Recovering the user interface

In the remainder of this paper we wil l dr i l l down further and further into what X-
Analysis provides and how it faci l i tates this type of work. Let 's f i rst look at each of
these areas in a l i t t le more detai l .

Subdividing the Software into Application Areas

In one of the authori tat ive books on working with legacy code, Working Effect ively
With Legacy Code , author Michael Feathers describes what he cal ls "The Legacy
Code Algor i thm":

• Ident i fy change points
• Find test points
• Break dependencies
• Write tests
• Make changes and refactor

6

10

Recovering Business Rules and Data Models

While this process is intended for maintaining legacy code i t is conceptual ly just as
appropriate for any sort of reverse engineering or reengineering effort . What is
interest ing to note is that that three of the steps of this Legacy Code Algori thm
relate to f inding cr i t ical locat ions of boundaries in the code . As any experienced
legacy developer knows, i t can be extremely di ff icul t , and seemingly impossible to
separate a legacy appl icat ion into sub-appl icat ions.

And why is th is important? As we saw in the previous sect ion this can be important
for such act iv i t ies as breaking up large projects into smaller ones, creat ing
interfaces into subsystems, devis ing manageable test p lans, designing SOA-type
wrappers, etc.

Recovering the Data Model

Throughout i ts history the IBM i has always supported a relat ional database, but i t
has never provided a complete set of data modeling faci l i t ies. A good data
modeling faci l i ty provides informat ion to appl icat ion managers and designers at
four levels:

• Data def ini t ion - the physical f i les and their f ields, plus logical f i les, or views
• Data relat ionships - the foreign key relat ionships that exist between f i les
• Data integri ty - the actual use of the data def in i t ions and data relat ionships in

pract ice and real i ty
• Applicat ion usage - where and how the data def in i t ions and relat ionships are

used throughout the appl icat ion software

Recovering and understanding the complete data model is useful for a number of
act iv i t ies, such as moderniz ing the database, interfacing to other systems,
developing test data and so on.

Recovering the Business Rules

Some est imates put business rules as compris ing around 30% of the content of
legacy systems that are coded wi th procedural languages, such as RPG. The f l ip
s ide of the coin is that those business rules comprise perhaps 80% of the value of
such legacy systems. Unfortunately, with legacy procedural systems the business
rules are tangled in wi th screen management, control f low and database access
code. Extract ing the core value of a legacy system is a major chal lenge.

The essent ial tasks involved wi th recovering business rules are:

• Ident i fying and scoping business rules in the source code
• Correlat ing instances of the same business rule coded in different areas and

recognizing them as being the same rule
• Build ing an indexed repository of the business rules
• Cross referencing the repository business rules back to the source code

7

Recovering Business Rules and Data Models

Recovering the business rules and bui lding a repository of them assists wi th such
act iv i t ies as central iz ing key logic, aid ing the design of reengineered systems,
faci l i tate code reuse. Etc.

Recovering Business Processes

Business process recovery and model ing take place on a couple of levels: 1)
identi fying what business processes are encoded in a system, and 2) ident i fying
what comprises a given business process. Creating a l is t of business processes is
more relevant to the f irst of the four sect ions, Sub-div iding the Appl icat ion . Here
we are more concerned wi th describing what goes on inside of business processes.

Such descript ions are often represented as UML diagrams, such as Act iv i ty
Diagrams or Use Cases Diagrams. The information obtained from this model ing
typical ly includes:

• Descript ions of user-dr iven or system-driven act iv i t ies
• Descript ions of the f low of control between these act iv i t ies
• Correlat ion of these act iv i t ies to the system implementat ion, such as part icular

screens or business rules

Knowledge of the business processes in a system are useful for helping analysts
and programmers def ine enhancements to the system, for communicat ing with
users in terms more understandable to them, and for providing a basis for
reengineering projects.

8

Recovering Business Rules and Data Models

H o w c a n t h e R e c o v e r e d D e s i g n b e U s e d ?

Formatting and Delivery Options

Most design recovery data in Databorough's X-Analysis Appl icat ion Discovery
product can be direct ly exported from the user interface as:

• PDF f i les
• Excel spreadsheets

Design recovery data that relate to UML specif icat ions is also avai lable in XML-
formatted UML f i les.

Addit ional ly, much of the data relat ing to appl icat ion areas, business rules and the
data model is avai lable in IBM i tables which are accessible to X-Analysis users.
See the X-Analysis Technical Guide for more information.

Feeding Processes

Design recovery data can be used to faci l i tate the populat ion and development of
reengineering designs in several ways:

• The recovered IBM i data model can direct ly feed the specif icat ions of a new
data model using standard DB/2 SQL.

• The recovered business rules can be converted and populated into a business
rules management system such as IBM's iLog or JBoss BRMS

• The recovered UML specif icat ions can be fed into any UML-based tool such as
IBM Rational Rose, Ecl ipse, Microsoft Vis io and so on.

9

15

Recovering Business Rules and Data Models

A C l o s e r L o o k a t R e e n g i n e e r i n g w i t h X - A n a l y s i s

Subdividing an Applications into Sub-Applications

Ent ire legacy appl icat ions are of ten too large to effect ively comprehend or
implement wholesale changes. For th is reason i t is often necessary or helpful to
sub-div ide a system into appl icat ion areas. The reasons and specif icat ions for
these may change with t ime. X-Analysis provides faci l i t ies for subdivid ing an
appl icat ion area into groups of objects that meet user def ined select ion cr i ter ia.
These cr i ter ia might be based on funct ions or even generic names. X-Analys is then
uses i ts internal sophist icated cross-reference information and Data Model
relat ionships to include, automatical ly al l re lated elements such as programs,
displays, or f i les in the appl icat ion area.

Appl icat ion area f i l ters can then be used through the X-Analys is Solut ion Sets to
v iew, document or reengineer as opposed to indiv idual objects.

10

Recovering Business Rules and Data Models

The Applicat ion Area diagram in X-Analys is is interact ive and by cl icking on
different parts of your system you can see the relat ionships between either al l
parts or just the area you've cl icked on and the areas i t relates to. You can see in
the fol lowing image the opt ions that went into def ining a sample appl icat ion area,
here, centered around one f i le, CUSF.

11

Recovering Business Rules and Data Models

Recovering Data Model

The relat ional database model of an enterpr ise appl icat ion is an extremely powerful
p iece of informat ion and potent ial ly valuable asset to the organizat ion. Unl ike 2E
systems, for a lmost al l RPG or COBOL appl icat ions running on System i, there is
no expl ic i t data model or schema def ined. By the term model , we are referr ing to
the foreign key or relat ional model, not just the physical model of the database.
The relat ional model or architecture of the database can be reused in a number of
scenarios including:

• Understanding appl icat ion architecture
• Data qual i ty analysis - referent ial integr i ty test ing
• Automated test data extract ion, masking and aging
• Build ing BI appl icat ions or Data warehouses

X-Analysis has the unique capabil i ty of automat ical ly deriv ing the expl ic i t system
data model from a legacy RPG, COBOL or 2E appl icat ion. Let us have a look at th is
and the model reuse capabil i ty in a bit more detai l .

Deriv ing the Legacy Data Model - X-Analysis accompl ishes this by analyz ing the
data structures of the phys ical and logical f i les, but i t then programmat ical ly traces
these through al l programs that use them to veri fy the existence of any cross-f i le
relat ionships or foreign keys. These der ived relat ionships can also be veri f ied by
the product by performing an integri ty check on the actual data. This ensures that
the data of the dependent f i le makes a reference, to data records from the owning
f i le. In this way, the automated reverse engineering can ful ly extract the data model
from even the most complex legacy system.

In the fo l lowing image we see one sect ion of the data model diagram, and in this
case, the CUSTS f i le has been cl icked on, showing al l the f i les that have parent,
chi ld or foreign key relat ionships wi th i t .

12

20

Recovering Business Rules and Data Models

Taking this a step further for the CUSTS f i le we use the context menu to v iew i ts
access paths:

With another c l ick we can dr i l l down into the foreign key relat ionships:

13

Recovering Business Rules and Data Models

Test Data for Modernizat ion & Maintenance Projects - Creat ing and managing test
data can be a labor- intensive and cost ly task. As a result of th is, many companies
resort to creat ing copies of ent ire product ion systems. This approach in i tself can
produce i ts own set of problems, such as excessive storage demands, longer test
cycles, and often a lack of current data for test ing. The relat ional data model is
used to automatical ly extract records related to those specif ical ly selected for
test ing. In this way smaller, accurate test subsets can be extracted quickly and
respect ively, with addit ional funct ional i ty for scrambling sensit ive product ion data
and aging the dates in the database forwards or backwards after test ing.

Recovering Business Rule Logic

Tradit ional ly business analysts f ind the business rules for a new appl icat ion by
organizing workshops and interviews and then manually wri t ing use cases to
describe the rules as text. However, for a legacy appl icat ion al l the rules are
already ful ly prescribed in the appl icat ion code - you just have be able to retr ieve
them.

The chal lenge is that in the vast major i ty of legacy RPG and COBOL programs, the
business rule logic is mixed in wi th screen handl ing, database I /O, and f low
control. Harvest ing the business rules from legacy appl icat ions therefore requires
knowledge of the appl icat ion and the language used to implement i t , plus a lot of
t ime to identi fy the rules, def ine their ful l scope, document them and organize
them. Addit ional ly, these rules need to be narrated and indexed, thus providing
cr i t ical informat ion for any analysts, architect or developer charged with enhancing

14

Recovering Business Rules and Data Models

or rebui lding a legacy appl icat ion. The task of harvest ing business rules is
therefore a highly ski l led, labor- intensive, and cost ly exercise for any organizat ion.

X-Analysis accomplishes this task by automatical ly scanning RPG and COBOL
programs and 2E models programmatical ly. I t then separates out rule code from the
body of the appl icat ion and identi f ies, indexes, narrates, and stores business rule
logic code into a structured, usable repository. In the f inal part of the process, i t
suppl ies appropr iate text narrat ives to describe these harvested rules.

For a given appl icat ion area, or sub-appl icat ion, i t 's this s imple:

Once the rules are derived they can be viewed in summary form:

15

Recovering Business Rules and Data Models

In this view the business rules can be viewed in Engl ish form, as shown, or as
pseudocode.

Business rules can also be opt ional ly viewed inl ine in the source code from which
they are der ived:

Note that the descript ion of the business rules is automat ical ly generated i t is not
l i f ted from exist ing comments. Al l the l ines in purple have been derived by X-
Analysis in the example above. Also note that these Business rules comments are
not added into to the RPG source but retained in the X-Analysis repository and
integrated into the view on demand.

The business rule repository can then be used programmatical ly to generate new
code, enhance the bui l t - in documentat ion and work in combinat ion wi th cross
referencing and annotat ion capabil i t ies to research the appl icat ion. I t may also be
used by developers as the necessary input for specif icat ion development, whether
for new appl icat ions or for modif icat ions to the current system.

Once we have derived business rules we can now view the code in mult iple ways:
the normal source view, a pseudocode view, and a business rule repository v iew:

16

Recovering Business Rules and Data Models

There is also a fu l l panel v iew of pseudocode which can be used for reengineering
or other analysis purposes.

17

Recovering Business Rules and Data Models

Recovering Business Processes

The object ive of recovering business processes is to help sketch appl icat ion
designs and to make such sketches portable and reusable in other IDE's such as
Rat ional, Borland, MyEclipse, etc. The three diagrams automatical ly generated by
X-Analysis are:

Act iv i ty Diagram - Act iv i ty diagrams i l lustrate the dynamic nature of a system by
modeling the f low of control from act iv i ty to act iv i ty. An act iv i ty represents an
operat ion on some class in the system that results in a change in the state of the
system. Typical ly, act iv i ty diagrams are used to model workf low or business
processes and internal operat ion. X-Analys is produces these automatical ly ei ther
from a single program with mult iple screens, or a group of programs. Each act iv i ty
in the diagram represents a usable screen format in the RPG program. A user can
also view the extracted Business Rules, relevant to that part icular act iv i ty/ format
direct ly from within the diagram.

18

Recovering Business Rules and Data Models

Each act iv i ty in a diagram has a great deal of information behind i t which can be
dr i l led down into by r ight c l icking:

Use Case Diagram - Use Case Diagrams model the funct ional i ty of system using
actors and use cases. Use cases are services or funct ions provided by the system
to i ts users. Auto-generated from X-Analysis, th is can be used as an alternat ive
view to the Act iv i ty Diagram, and also has dr i l l -down capabi l i t ies for v iewing
extracted Business Rules.

19

Recovering Business Rules and Data Models

Recovering User Interface

The screens of a legacy appl icat ion are a c lassic example where the design is
useful in a modernizat ion context, and the code is not. Al l modern IDE's provide
powerful UI development tools. Modern UI standards and preferences for style and
technology also vary from project to project. The sheer number of screens in a
legacy appl icat ion presents a logist ical problem in recreat ing them manual ly, even
with the cleverest developers and best tool ing. X-Analys is lets you see what the
legacy screen looked l ike wi thout having to run the appl icat ion which is a great
t ime saver for people who haven't been involved wi th the or iginal appl icat ion:

Screen designs of legacy appl icat ions are not just about look and feel, there are
at tr ibutes, and logic embedded which from a design point of view is relevant, no
matter what technology being used to implement them. These are:

Formats/Layouts - Some screens may benefi t f rom amalgamation or redesign, but
table edits, and non-transact ion type screens wi l l largely remain the same, i f not
identical in layout .
Act ions - whether from sub-f i le opt ions, command keys, or default enter act ions,
these of ten represent an important part of the usefulness of an appl icat ion design.
The mechanisms used to offer or invokes these cal ls may change, but where they
go logical ly and what parameters they pass wi l l largely remain consistent.

Fields/Fi les/Attr ibutes - What f ields are on what screens, and where the data
comes from is a requirement in any system development. Attr ibutes of a f ield can
also help determine what type of controls might be used in a modern UI. For
example, a Boolean type might be implemented wi th a check box, a date wi th a

20

Recovering Business Rules and Data Models

date prompt. Again, these are simple enough to edit in modern IDE's, but the
volume associated with any large legacy appl icat ion modernizat ion can make this
work prohibit ive.

Data Model Mapping - Val idat ions and prompting mechanisms that ensure
referent ial integri ty in legacy appl icat ions can also be vita l to extract. This is both
to implement referent ial integri ty and to provide design informat ion for bui ld ing
modern prompt or select ion controls such as drop downs or l is ts.

Natural ly, i t wi l l be desirable to redesign some UI's completely. For those programs
and screens where this is not the case, the design, and mapping informat ion can
be used direct ly in the new version of the appl icat ion, even though the UI code has
been discarded.

X-Analysis extracts User Inter face design information as described above and
stores i t as meta-data in the X-Analysis repository. This is can be used as
reference documentat ion for rebui lding UI 's manually, or for programmat ical ly
regenerat ing new View and Control ler art i facts in the chosen new technology.
X-Analysis also has reengineering features which can generate a JSF/Facelets UI.
The design meta-data can also easi ly be used to generate new inter faces using any
technology such as EGL, Ajax, RCP, C#, VB or even RPG.

21

Recovering Business Rules and Data Models

S u m m a r y

Design recovery and reverse engineer ing provide great product iv i ty benef i ts for
numerous tasks relat ing to legacy appl icat ions:

• Better organizat ional understanding and communicat ion of system capabil i t ies
• Improved enhancement and support of the legacy system
• Improved processes for modernizat ion, restructur ing or reengineer ing
• Better management of al l the above work act iv i t ies

Databorough's X-Analysis Appl icat ion Discovery product assists IT organizat ions
with these tasks by providing proven, r ich information recovery of a l l fundamental
aspects of reverse engineering to aid in the overal l design recovery process:

• Subdividing the software into appl icat ion areas
• Recovering the data model
• Recovering the business rules
• Recovering business processes

“You cannot fully use, improve or replace what you have, until you know what
you have.”

 Steve Kilner
© Databorough

22

	Executive Summary
	What is Design Recovery?
	Why Reverse Engineer or Recover the Design of an Application?
	Six Conceptual Reasons
	Twenty Three Practical Reasons

	What can be Recovered that's Useful?
	Subdividing the Software into Application Areas
	Recovering the Data Model
	Recovering the Business Rules
	Recovering Business Processes

	How can the Recovered Design be Used?
	Formatting and Delivery Options
	Feeding Processes

	A Closer Look at Reengineering with X-Analysis
	Subdividing an Applications into Sub-Applications
	Recovering Data Model
	Recovering Business Rule Logic
	Recovering Business Processes
	Recovering User Interface

	Summary

