
Modernization Podcast #1
Mark Schroeder of SoftwareModernization.com interviews Databorough’s Mark Tregear.

Automating Y2k projects was the first mainstream success story for Databorough’s tooling and 
services. 15 years of research, design, development and product evolution later Mark Tregear 
reveals how Legacy applications can now be automatically modernized using Databorough’s 
most recent versions of X-Analysis. The combination of 25 years of experience and success as 
one of the world’s leading thinkers and practitioners in this field makes for a very interesting 
interview, available as an MP3 recorded interview and transcription below. 

Give  me  a  little  bit  of  background  about  your  experience  with  software  development  and 
application modernization.

I started as a programmer and then became project manager and then became a freelance 
developer and got a group of freelancers sort of working for me. Then, back twenty years ago 
we began developing too, just after Synon had come out that was also a type of development 
technology,  but  we  soon  realized  that  we  were  rather  eclipsed  by  the  already  existing 
contenders in that. Secondly, quite surprising to us, people really needed help in understanding 
and re-working their old applications. We hadn’t intended to do that, but it sort of got thrust upon 
us. The tool developed more and more as a re-engineering design recovery tool, which basically 
extracted all the RPG and COBOL applications into a comprehensive data base. Then, we can 
automatically rework the software from there. We hadn’t anticipated being successful in that 
area because there were already tools for that,  but it  turned out they weren’t  satisfying the 
demands. We really had a big hit with using that software to form fairly mundane re-engineering 
for things like euro conversions, field re-sizing and most importantly year 2000 conversions. 
Using our technology, you can write programs and we did write programs that automatically 
modernize the software in that mundane sense and since making it actually cope with the year 
2000 change or similar change. We can make that process 100% automatic which is what the 
opponents  said could not  be  done.  So,  it  got  to  the extent  that  people  were sending their 
software out to be converted. We could convert it completely, send it  back to them the next 
week and charge them a huge bill. We made an awful lot of money from that which has since 
the year 2000 just been re-invested in the company.   

Having a way to do that automatically sure makes a difference. A lot of companies had to read a 
lot of lines of code.

Yes,  we  also  used  to  do  that.  There  was  a  sub  part  of  the  company that  did  that  for  2e 
applications. Perversely, it wasn’t so easy to make that 100% automatic. No defect of the 2e 
code base, but simply because there is a relatively smaller number of customers for that, so it 
wasn’t possible to alternate quite so efficiently.

http://www.SoftwareModernization.com/


As you’ve  gone through the history of  your  company more recently,  what  are some of  the 
primary reasons that you see companies needing to modernize their applications?

There are three reasons. The top reason is for productivity. Modernizing and working with an 
application that consists of millions of lines of 3GL code, Cobal or RPG is just not very efficient.

The second reason is to work with a more modern user interface, though it’s possible to have 
RPG programs work with web applications with CGI, but obviously the language wasn’t written 
for that whereas that type of user interface and that type of infraction is native to the languages 
like Java, VB, C- Sharp etc… The third reason is to make use of a much larger base of people, 
programmers and software houses that work with the language. With RPG you’ve got a rather 
restricted pool of staff and outsourcing companies that you can deal with.  With almost all of the 
people new to the industry I find it much easier to work with one of the newer languages and 
forces of competition being what they are, you get a much better deal from an outsourcing 
company.

In order to modernize there are several different approaches that are out on the market right 
now.  From  simply  changing  the  screens  to  completely  re-writing  and  re-engineering  the 
application. What are some of the other kinds of approaches that you see?

Well, let’s do it at a scale of strategic options that you have. As you mentioned you can simply 
opt to put a new sort of screen on the front of the old application. It’s a lipstick on a pig kind of 
strategy.  I  would  argue that  you  really  haven’t  modernized then.  You’ve  actually  just  put  a 
different sort of terminal on the front,  so it’s really an un-modernized application.  A second 
strategy you can have is to essentially convert it where the code will effectively stay the same. 
Line for line converted into a new language. It’s difficult to see the point of that because you 
won’t  actually get  any better  productivity;  you’ll  actually  get  worse productivity because the 
resulting application will be difficult to work with whether you’re an expert in the new technology 
or the old technology. New programmers would look at it and think “I would have never coded it 
like that.” It’s analygis of system 36 conversions they’ve done in the past

Is that where you get a language sort of like Jobal? You know when you get a combination of 
Cobal and Java mixed together. 

Yes, well basically what you’re going to get  in a stait language conversion,  the RPG or Cobal 
instructions will have been converted into say the Java instructions. There usually will be more 
lines of Java than there were of RPG , simply because some of those instructions do more 
things  and  you  have  to  emulate  all  the  specific  features  in  the  old  language  in  the  new 
environment.  You will end up with Java that nobody could possibly have written. You have a 
system that’s totally peculiar to a converted system. The whole point and productivity of the new 
language comes from that which is written in an object oriented way. If not, then it loses any 
advantage at  all.  So,  I  would  argue there’s  basically  no  point  in  that.  The third  and fourth 
alternative, the third alternative is to re-write it without tools, which is going to achieve the goal 
but it’s going to achieve the goal rather slowly because you can only re-write software at a 



certain pace. It also tends to confuse the issue as to whether the new application needs re-
analyzing from the business point of view.

The fourth approach, which is our approach, is really a variation of re-writing it. It’s to re-write it 
automatically using the recovered design. In other words, to recover the essence of what the old 
programs did to rebuild it to the same quality standards as you would do as if you were re-
writing it from scratch. Then, of course, you’ve got to make sure that you’re retrieving all the 
peculiar details of the old application.

You actually end up with brand new programs, but using the legacy logic and so forth.

Yes, the Phoenix approach. You’re building it again on the ashes of the old.

When you use your approach, which sounds like a very good approach, what does this kind of 
project consist of?

In the first stage you’ve got to actually recover the design, which is the application of our core 
tool X-Analysis and just from the business point of view, from our companies commercial point 
of view, we have found to our surprise,  that a lot of companies get enormous value purely out of 
that first stage. They don’t actually have to go very much further to gain value from the project. 
For some people the modernization goal is a little way off now the planning can take several 
years.  The  second  stage  is  to  break  up  the  application  into  projects  areas.  We call  them 
application areas. So the modernization can be staged. Basically, our approach because this 
human intervention is going to take time. You have to decide in what phases you’re going to 
modernize. You have to split up the application from a business point of view. That is also an 
output of the sub-division of the application that has great value from the user’s point of view 
quite apart  from modernization.  Then the third phase is to actually apply the modernization 
automatically. In other words to recover the design and re-build into the  new application from all 
the recovered design constructs. Include the recovered screens the transaction details when the 
files are read or updated etc..and the business rules. Determining the validation and subsequent 
processing. That’s all done automatically. The fourth stage is the audit process which is to check 
that  in  fact  all  the  details  of  the  old  application  are  in  the  new  application  and  to  apply 
corrections.

When you’re modernizing your  project  is  there a certain application architecture that  you’re 
trying to move to? Does it really matter what architecture you are going towards?

Well, what we find is that regardless of the new technology that the customer is going to use, 
the specific language. Whether it’s VB,  C#, Java, PHP, etc. Really people are aiming for the 
same type of application architecture broadly. There really is strategic agreement on that. What 
we mean by that is you’re moving from a procedural approach to a screen based event driven 
approach. In other words where the actions of the user on the screen drive the program, rather 
than the programs driving  the user.  It  also  can be an object  oriented approach where  the 



functionality, instead of being replicated and repeated many times in the Legacy programs, its 
encapsulated in new objects. I find that consistent.

In your approach, you don’t necessarily have to target one specific language. You can actually 
per project, determine what language you want to build your final programs in?

That’s absolutely right. From our point of view the generational language doesn’t make a huge 
amount of difference. We favor the languages that are most similar to Java, but basically that is 
most of them…so we’re talking about Java, C#, PHP, EGL, but it won’t make a huge amount of 
difference if you use VB for example. 

In your process you’re recycling your code into modern language. It seems like that’s a complex 
process. How are you able to accomplish this?

Fundamentally by design recovery.  In other words, when we have a 5000 line RPG program 
we’re not aiming to produce 5000 lines of Java. The design recovery process is first of all finding 
the screens and mapping them as new screens. In other words, it’s producing what we call 
function definitions.  What in 2e systems are also called function definitions. In other words, 
enhance screens that not just define the look of the screen, but where the data comes from, 
how it’s validated etc. and also how the screen is processed in terms of what are the further 
programs that are called from there. Within looking at the actual logic that is processed as a 
result of the command keys or enter key on each screen to see exactly what happened. That 
can either be a logical action, like a call to another function or it can be a business rule. In other 
words, conditional processing based on the value of one of the database fields or fields that 
were entered on the screen.  The logic is built a fresh from that design. So you’ll end up with a 
much smaller amount of code. Of course there will be some bits of logic and peculiar methods 
of screen flow that don’t easily translate and that’s what the audit process ends the projects on.

Now,  you mentioned earlier  that  most  of  the older  languages are  in  procedural  and you’re 
moving toward object oriented. How do you handle that conversion from procedural? They work 
so much different from an object oriented approach. How do you accomplish that? 

Right…well, the very first primary difference between the procedural languages and the newer 
languages is that  the newer languages are event  driven.  In other words,  instead of  the old 
language actually driving the screen, in VB or Java or any of these languages, the event on the 
screen drives the logic. Now we have an automated process that we’ve built  up over many 
years that essentially does this. That actually looks first of all after after having found all the 
screens, then finds what the screens do. Like turning the whole program inside out so that it 
becomes a set of procedures that are called, invoked from each screen action, not just written in 
one long screen of logic. Then the second aspect, in terms of processing driven by each event, 
we’re  turning  it  into  business  rules.  In  other  words  we’re  identifying  the  purpose  of  each 
particular snippet of logic and rebuilding that as an object.



Then, I guess after that you have to make sure that the programs actually fulfill the business 
logic. Your audit takes care of this. Is that correct?

Yes, exactly. Actually, I just want to make one further addition in a previous answer. There is an 
exception to what I just said, which is if you start with a 4GL system like 2e, perversely that’s 
already written in an event driven model so you have an extra advantage there. The Logic 
always was written in  2e and some 4GLs to event driven models. That makes that quite precise 
so that you won’t actually get. If you’re in a 3GL situation with RPG or Cobal, basically there’s a 
final audit stage, which we provide you screens or interactive displays that allow you to see side 
by side the old logic from the program and where it’s been mapped into the new objects and it 
specially highlights any lines that have been left behind and then you have to decide what to do 
with them. That is the audit process.

When you’re looking at the Legacy system, what  are the two most important assets of that 
system that you look at in the modernization project?

Essentially, we’re looking at transaction definitions. In other words what in the 2e system would 
be called functions.  Enhanced screens and what the screens do and where the data comes 
from and how it’s joined together, the join rules. Secondly we’re looking at the business rules, 
which are the process rules. 2e systems, that’s action diagrams, but more generally it’s the 
Logic/  Java,  logic  beans  that  are  driven  by  events  on  the  screen.  We’re  extracting  that 
automatically by analyzing the RPG or Cobal code.

You’re  extracting  the  business  logic  without  programmers reading the code.  What  is  it  that 
you’re doing to extract that logic?

Basically,  it’s  processing  the  code,  looking  for  business  rules.  Business  rule,  dictionary 
definition, is any piece of logic that conditionally depends upon the value of a database field. 
The first thing we’ve got to do is to map where every single work field in the program comes 
from. Which is the same thing we used to do in year 2000 X-Analysis periods. The unique thing 
about our tool, the basics analysis tools, is that it has a knowledge base of every line of every 
variable. So it’s able to map what every variable means. Then it’s looking for pockets of logic 
that are driven by the conditional value of fields derived from the data base. It then finds what 
the action does. The action might be a validation or it might be some miscellaneous piece of 
logic.  If  it’s  a  validation  for  example  it  would  look  at  what  is  the  convention  by which  that 
application puts errors on the screen. Perhaps it said a message number or an indicator and it 
will  de-code  what  that  really  means  in  terms  of  the  application  and  what  is  the  message 
description and will turn that into a pocket of logic that is described in our re-engineering data 
base. That will be converted to the new system.

In part of your process you actually develop a data model. How does having a good data model 
help you in writing code into the modern language?



Basically, because it enhances the productivity of the new approach. Any modern system tends 
to have the entity relationships explicitly described. We know that for example the orders file 
refers to the stock file. That information can be used or is used in most development techniques 
to make sure that the data base accesses automatically know how to join the data and they 
automatically  know how to  validate  the  data,  which  is  quite  a  productivity  boost.  Now,  the 
System i is fairly unusual in not having that entity relationship information  unless somebody had 
happened to use the very latest features provided by IBM. What our tool does is it automatically 
analyzes code to see what entity relationships existed in the legacy code and then it makes that 
into  an explicit  data  model.  Then any new functions  built  will  be  re-engineered or  whether 
they’re built entirely from scratch, but automatically know about those modeling relationships.

Let’s see… DDL, where does that come into converting to a new language?

Converting the System i application , converting it from DDS to DDL is not necessary, but it is 
quite advantegous. The two advantages it will give you is first of all when you convert the DDL, 
it will then describe the fields by their long name, the textual names which of course is the way 
you refer to them in 2e for example. That type of reference is absolutely standard in the newer 
languages even if the programmers do not expect to be reading pneumonics through the code. 
There are ways in which you can write new language using hibernate for example.  So that you 
work with new alias names in spite of staying with DDS,  The second way DDL helps is it will 
improve the performance of the application quite considerably.  When you move to DDL you 
move to an SQL defined database.  Data is  validated in  a different  way in  an SQL defined 
database. It’s validated when you write it,  not when you read it.  And that will  make quite a 
considerable performance improvement and make it easier to write new SQL based applications 
and every new language, I think without exception uses SQL to access the database rather than 
record based  IO as the RPG applications do.

SQL is  definitely getting to be used quite  a bit.  I  was reading and saw you talk  about  the 
application skeleton that’s developed out of the data model. What does this consist of and how 
do you write that?

As we said before in our technology, as with in fact almost all 4GL and model based generators 
what happens is we take the recovered design and we build a new program using a template 
program. In other words a core standard design for that type of program that we store in a little 
data base.  We have skeletons,  like templates already defined for  all  the standard types of 
transactions such as entering data records, display, sub file, transactions, etc. Our technology 
allows one to feed in more types of skeletons if you encounter very unusual types of legacy 
logic. Basically it consists of the model programs and the model business logic for any particular 
target language C#,  Java,  PHP etc..

Now UML is one of the modern definition languages. Do you use that in re-building the Legacy 
systems?



Well  yes,  though UML is  not  necessary to  our  approach,  but  it  can be used to modify the 
recovered design. Let me explain. The recovered design is extracted into our database. Which 
can then be translated and is translated into UML so that you can see the transaction logic and 
the entire logically recovered design in UML format and display it in rational tools for example or 
if it’s built in eclipse tools that works out of the open source eclipse project and you can use that 
UML to decide on any changes you wish to make to the application so you can work with true 
model based development in your re-engineering stage. In other words modify the application. 
After its modified the design, after it’s been recovered and build from a slightly modified design. 
However, it’s not necessary to do that, if you wish for a quick project you can just avoid the step 
of looking at it in UML and generate it to the target language straight away.

But if you do use UML, then you’re able to maybe correct some of the issues that you’ve had in 
your Legacy system.

Absolutely,  but  a typical  issue would be that  the Legacy system has been built  around the 
constraints of the 24 x 80, 5250 design. So in other words you can’t easily fit many fields on the 
screen. So the application was splitting to a number of transaction screens artificially in order 
that we didn’t compromise that screen size limitation. In the new application, you’ve got much 
broader constraints there.  So at the UML level,  you can choose to merge different screens 
together.

Say you’ve  done your  analysis  and  you’ve  seen now your  Legacy system has some core 
issues, maybe in the database design. When would you address that in your modernization 
project?

You would do that before going to stage three. In other words, before doing the generation of 
the new application.  You would  generally  be more efficient  in  other  words  to perform your 
modifications while you were still in the Legacy mode. So you should aim to correct the final 
definitions while they’re still in the X-Analysis model of the application. You can of course correct 
those in UML, but then you’d be doing things by hand. The beauty about making changes in the 
X-Analysis model is that one can do the work programmatically just as we used to do for the 
year 2000. In other words you can make global changes and this is quite often what our tool is 
used for even when the customer is not considering actual modernization at the moment. They 
simply wish to accommodate the change to the database design or an increase in field size or 
change of keys etc..can all be done automatically.

That’s a pretty nice ability to do; because a lot of times in a modernization project you do have 
some glaring issues that you want to address. It sounds like you could potentially address those 
here while you’re modernizing. So you end up with a much better product in the end.

Absolutely, and of course another factor which I didn’t mention is that your existing staff are 
much more familiar with the current technology than they are with the new technology ..so it 
reduces risk to make those type of modifications while we’re still in Legacy mode so to speak.



So now, let’s move on a little bit in the phase. We’re ready to generate our actual programs. 
What process do you follow to generate the programs? Is it  all  done automatically that you 
generate them or do people have to look at the logic that’s been out there in write programs?

They don’t  need to write  programs.  What  does at  the generation stage,  there is  scope for 
manual intervention. Basically we are a logic viewer. My logic viewer presents you with a screen 
of all the recovered design, of all the recovered business logic with the blocks of business rule 
logic that are going to be recovered or highlighted on the parts that are not recoverable or not 
highlighted . It then allows the user, the programmer to work through that and change the design 
decisions made by the product. Of course if you find that the product is making too many wrong 
decisions you would then confer with Databorough about changing the parameters of the tools 
so that the conversion is more accurate.

Once the application then is written your audit  step comes into play.  How do you audit  the 
generated  programs  to  make  sure  they’re  doing  what  they  were  supposed  to  do  in  the 
beginning?

Well,  there are two stages to deal with it.  The first stage is to audit what Legacy code was 
carried across and what was ignored. We give you special user interface for analyzing that. The 
product itself highlights exactly which logic was converted and where it was placed in the new 
VB or Java program. You can then look at your legacy logic and see which pieces would have 
been left out. That’s one thing. That’s stage one and that may of course require some extra 
manual work. Hopefully, not too much, but there is certainly, in a more complex software, a need 
for that. Second stage you’re actually auditing that it actually works and that generated form will 
have to be done by testing.  There’s no way around it.  This is simply an enhanced, greatly 
enhanced method of building new software, but as with all software you’ve got to test it.

So right now you don’t have an automated testing process? Do people just have to run though 
the testing themselves?

We don’t supply automated testing tools, although there are other vendors that do and we can 
put you in touch with them.

So you do end up with a good product that you can work with and test at that point?

Absolutely, that’s the whole point.

If you could compare this process to someone going in and manually doing all these steps…
what kind of time are they going to be saving?

We will save approximately two thirds of project time. So if it would have taken you six months 
manual it would take you two months with automation is the rough rule of thumb. Of course 
sometimes people under estimate how long it would have taken manually, but we think that’s 
quite accurate.



Are there any shortcuts that someone could take along the way or do they pretty much need to 
follow every step all the way though?

Well, the major way you can make a much bigger time saving in that two thirds is by piloting and 
prototyping the approach so that you increase the scope of the automation. This would often 
require us to be helping with the project by improving for example the application skeletons way 
more suited  to the  way that  particular  legacy application  worked.  By repeated work  with  a 
prototype application over quite a number of weeks, maybe months, one can streamline the 
automation approach. It sort of becomes 90% automated with very little manual intervention.

90%...that’s a pretty good number, especially for a real large application.

Well, absolutely….you have a choice and this would come out in the application sub-division. 
Whether you wish to do a small piece of the application at a time or whether you’re aiming to 
convert the complete software houses you might well choose to do so if they’ve got a complete 
application and the new technology. If you’re aiming for the latter then it is probably worthwhile 
to buy in some help from Databorough to streamline the modernization technology so it really 
suits your application and you can get the whole thing done really quickly after that screen lining 
process has taken place. Of course during the screen lining process it may take a couple of 
months but your own staff don’t actually have to spend much effort in that period. A special case 
of course is with existing applications that already were model based. In other words they were 
built from a 2e model or some similar technology and were developed by a particular technique 
even just using RPG code. In those cases if we can guarantee that all the software fits a certain 
model which is a great advantage to those approaches that you know what to expect. Then it 
may well be possible right now to achieve that sort of 89%.

 A model based language like 2e actually lends itself towards being modernized more quickly 
than RPG or Cobal application

Absolutely..the 2e application, to take the extreme case was already written in what is effectively 
a modern architecture and that performed in which it is in the model. The only trouble is that as 
soon as it’s generated to RPG it’s in really a very old legacy structure. So it’s actually perfectly 
primed to be generated as Java or similar.

A modernization  project  is  risky and  expensive.  How can companies  address  the  risk  and 
reduce  the  risk  in  a  modernization  project  and  maybe  come  out  in  a  more  cost  effective 
process?

Essentially, by doing the modernization piece by piece is one thing .The second is by deploying 
much more technology too, rather than deploying many of their staff on it.  The great risk with 
modernization projects is that staff spend a lot of time writing software and then abandoned 
because there’s a change in approach decided on later and this happens quite frequently and 
the modernization takes so long that a newer technology comes along or the current approach 
is proved not so useful. The beauty of doing the modernization with a tool with a high degree of 



automation is that if a change of technological strategies is decided upon and there are quite a 
few  possibilities  there.  Different  UI  Technologies,  user  interface  technologies,  different 
development languages quite a lot of super Java technologies like Websphere Smash as an 
example.   Ruby,  Grails,  Groovy are  new technologies,  then cost  of  adapting  to those new 
technologies comes down to the tool provider. I asked that actually to the company performing 
the conversion and so that reduces the risk a lot.

This process, can it be effective for large shops and small shops? You know small shops maybe 
have 2 – 5 or 10 programmers that are busy doing their work and then your big shops have 
maybe hundreds of programmers.

Well, yes you can use the modernization approach on either end, but they will use it differently. 
Where a large system would be relatively much greater stress on the analysis stage, so the 
generation approach becomes more of a downstream activity. With a large shop it’s much more 
critical to know that you’re re-building the right portion of the system, you’re building it in the 
right way. It’s a system analysis and the use of the recovered design just to establish exactly 
what you’re trying to do and it links with the part of the soft ware that’s staying in the legacy 
structure become much more critical. With a small shop you’re laying for a much more higher 
degree of automation to achieve a more straight forward objective.

You mentioned a little bit about the kind of assistance you provide. Can you elaborate a little bit 
more on the kind of assistance Databororough does provide for customers?

Essentially, in the first instance  of course we’ve got to train you in the use of the tool and the 
use of  the  approach.  Secondly  and perhaps  most  importantly,  we’ve  got  to  prove that  the 
approach will that the approach will produce exactly the end result that you need and it’s much 
more efficient than if that’s our cost rather than the customer’s cost. So essentially we will take a 
portion of their software and modernize it or alternatively we will undertake just streamlining the 
approach with new skeletons and new techniques to achieve their precise objective. Basically, 
rather than asking the customer to experiment with the applications and tool to their particular 
legacy techniques, we’ll do the early stages of the project for them and then they’ll take it over.

Then the tools that you provide. Do you market them separately or are they a package of tools 
that you use to modernize? How does that work?

We supply our  tools in a module based form. The modules are cumulative. In other words you 
always  start  with  the  basic  X-Analysis  which  I  always  think  is  now  the  industry  standard 
documentation cross referencing tool.  Then you move to re-engineering and data modeling. 
Then you move to design recovery and you basically decide to buy more or less of the tool set. 
Or you can start small and just buy the add on models which essentially doesn’t cost you much 
more.



…And if someone’s interested in finding out more about your process and your tools and your 
customer support. What’s the best way for them to reach you?

Just  log on to  www.databorough.com .  That’s  databorough.com.  and you can automatically 
download a free trial of the software. There’s all sorts of materials explaining how it works. You 
can test all of that out remotely. As soon as you’re ready to talk about it, send us an email.

http://www.databorough.com/

	Modernization Podcast #1

