\V/

Databorough

Controlling Test Environments with

X-Analysis and X-Test

Simon Savage

WHiTE PAPER

Table of Contents

EX@CULIVE SUIMIMATYcouiiiiiiiii ittt et ettt e st e e bt esateeabeeseteeabeesaeeeaseessteeensbeeeannseeeannees 1
INEEOAUCTION. ...ttt ettt e h ettt b e e ab e eb e e e st e e bt e s et e e bt e eabeeeeabeeeeneee 2
The Challenges Of TESTINE.cc.eeiiiiiieiie ettt ettt e et e st e e beesate e bt e seteeateessaeenbeessseeeennee 2
UL TESEIME. ...ttt ettt ettt ettt e ettt e et e e et e e eaa e e esaaeeessseesnsseeensaeesaseeesnseeeasseeannsaeensseaesennnssnaeeeannnns 3
ST 1 o] o T 214V OSSPSR 3
ChecKiNg RESUILS......coiiiiiiiiieciee ettt et et s e e st e e steeesnbeeesseeensaeeensnaeessennnnnes 4
ChecKing RESULLS.coiuiiiiieiiicieee ettt ettt ettt e et e e bt eeabe e bt e enbeesnbeeeenneeas 4
Building a Batch Test ENVITONMENL...........ccoiiiiiiiiiiiiieeiieeeiieeeie et e e e e serae e e e e s eaaaaeaeeas S
Choosing appropriate TSt CaSE@S......cc.ueeuieruieriiieiieeiieriie et et ettt e et e stte et e sieeebeessteenbeesseeenseesneeennees 5
Setting Up a Physical Test ENVIFONMENL.........cccviiiiiiiiiieiiieeciee ettt e e e e vaaee e 6
The TOOIS fOr the JOD...c..eoiiiii ettt st 7
Setting UP TSt CASE TUNS....cccuviieiiieeiiieeiieeeieeeeieeeeieeesteeesaeeessaeeesaaeessseeesseessseesseeessnssseeesssssssseeesenns 12
RUNNING TESE CASES...uvvieutieiiieiieeiie ettt ettt et e ettt et e st e e bt eeateeabeesateenbeesseeenseenseeenseesseeenseesanseeesanseeennns 13
ReVIEWING the RESULILS.....ccuiiiiiiieiiie ettt e e et e e st e e e e e e e sseeessseeennseeeennnes 14
First View - The important difference is the first 0ne you Spot.........ccceeveeriiiinieniiienieeiieie e 14
Refining by Field EXCIUSION.....cccviiiiiiiiiiece ettt e e e e neaaaee s 16

Controlling Test Environments with X-Analysis and X-Test

Executive Summary

Malfunctions in software cost money. The cost of software defects in a production
environment is considered to be up to 100 times greater than that of the same
defect when detected and corrected in earlier stages of development. An
undetected error can have potentially disastrous consequences for a business.

Only thorough testing of changes before going live can achieve an acceptable level
of stability before release. Tests may be of many kinds. Functional tests, validating
and verifying, manual or automated tests, user interface or batch tests... not to
mention all forms of non-functional and technical testing done by development
teams.

Complete “by the book” tests engender skyrocketing costs that are not compatible
with the cost-effectiveness inherent to business applications, so there will always
be an element of compromise in the type and amount of testing that is done.
Validating the conformity of a new version to the (changed) user requirements and
verifying that it works flawlessly are generally the most obvious types of functional
tests to implement, and are well understood. Such tests will by definition be
specifically adapted to each change that is being implemented, so will never be the
same.

Verifying that nothing has been broken - regression testing — is the second key
area of functional testing. Here we will very often be running the same tests over
and over again across many generations of changes. Because of this, regression
tests are a natural candidate for automation. And as ever in the software world,
automation is the key to achieving considerable gains in quality, at a fraction of
the cost.

This document is not a review of all aspects of software testing. It illustrates how
the X-Analysis X-Test tool framework will help you achieve repeated gains in
functional test operations by automating regression tests.

Controlling Test Environments with X-Analysis and X-Test

Introduction

What immediately springs to mind when we think about functional testing is a user
(a developer in the early stages, an end-user in the later stages) using the new
interface as thoroughly as possible and checking that the results conform to
expectations.

This is a manual process, and is well adapted to each new change. Although such
manual testing is generally efficient for locating defects in a software application,
it is a laborious and time consuming process. Furthermore, it may not be effective
in locating some kinds of defect — notably, software regression, where the change
has broken something apparently unconnected that was previously working. It’s
generally not a practical proposition to test every single part of an application to
make sure nothing has been broken. Regression testing needs a different
approach.

We can use computer programs to automate some of the tests that would
otherwise need to be done manually. Once tests have been automated, they can be
run quickly and repeatedly. This is often the most cost effective method for
regression tests on software applications with a long maintenance life, as even
minor changes can cause potentially disastrous software regression.

Once such automated tests have been run, the biggest challenge is to detect
exactly what has changed but should not have. Changes caused by the new
software version will generally be immediately obvious, as the testers and the test
process are very focused on these. But finding errors in other unexpected parts of
an application, errors that may be buried somewhere beneath huge amounts of
data, is a daunting situation, akin to the proverbial “needle in a haystack”.

X-Test provides a framework and the appropriate tools to let us configure and
automate test cases which will then run as batch jobs; to programmatically detect
any unwanted differences in the results; and to review those differences in a user-
friendly manner. In this document we will examine:

» The challenges of testing

* Where X-Test fits in

« Choosing appropriate test cases
+ Setting up and running test cases
* Reviewing the results

The Challenges of Testing

To run the risk of stating the obvious, the central challenge of the test process is
to find all of the defects. We will always worry that we have missed something
important. The more tests we run, the better our chances of finding defects, though
even the most critical applications can never be guaranteed to be 100% bug-free!

As we have said, to enable greater coverage with fixed resources, there is one

2

Controlling Test Environments with X-Analysis and X-Test

obvious direction to choose: that is to automate, to let the computer do as much of
the work as is possible.

Let’s take a look at how we can automate our tests. We won’t be discussing the
earlier stages of testing as done by the development team, in which we ensure that
each individual component does its job reliably. It's the later stages that interest
us here, when the entire application is already up and running.

Ul Testing

Although user interface testing remains the most natural and probably the most
efficient way to find defects in a new version of a business application, it is not the
object of this document and is only examined briefly in this section. User interface
testing falls into one of two categories — manual tests or scripted tests.

Manual tests are the most revealing. A user-tester performs his tasks on the new
version in a safe test environment. The user will see and report if any bugs appear
or if results do not conform to specifications.

As users will generally be very concentrated on what they are doing, what they
expect to see, and what results they actually do see, and also have the uncanny
ability to find strange and unexpected ways of doing things, most defects can be
found this way.

Automation is nonetheless an option for Ul testing. It generally entails recording
and playback using scripts (there are many tools available for this, such as IBM’s
5250 emulator, multiple open-source web interface scripting tools, etc).

The case for automation in Ul tests is compromised by 2 basic issues. Firstly we
lose the focus and the unpredictability of user input, which are the strong points of
Ul testing. Secondly, even the most minor change in the interface will render the
script inoperable — and the whole point is to test things that have changed. As a
result, scripts may need to be rewritten for each set of changes, which partially
defeats the object of the exercise. Scripted automation in Ul testing is however
useful for regression tests on unchanged parts of the application.

Batch Testing

Running test on the batch processes is a major part of the tests of any large
project. These tests are usually much simpler to run, as any changes are clearly
taken into account by the code and have no effect on the “outer shell” script —
otherwise the code will not work. For example, a monthly audit program may have
undergone a extensive rewrite, but will still be triggered by an unchanged CALL
ORDERAUDIT command. No particular user input is required.

Controlling Test Environments with X-Analysis and X-Test

As with Ul testing, batch tests fall into 2 categories -

* batch tests to verify expected changes and check they are working as per
spec.

* batch tests to check that nothing has been broken inadvertently — i.e.
regression tests.

Checking Results

How can we verify our test results on batch test runs?

Ul errors are likely to be visually apparent when the user examines his screen and
printed output, and thus easily reported. Although some printed output may be
produced by the batch runs and may easily be visually checked, when we do need
to verify those test results — and also the Ul test results in some cases — we need
to check the data in the underlying database files. This is particularly true for
regression tests, and it requires a different approach.

To verify the batch tests and check for regression, we need two sets of the
application and database: one with the software version before the changes were
made; and the second with the new software version and identical data. Then we
can run the batch process on both sets and compare the results from the two runs.
The differences will tell us if we have introduced bugs.

For example, on a monthly sales report, figures should all be identical (unless
specific changes have been implemented on that report). In a customer account
database file, the balance amount should tally, etc.

This is simple enough in theory, but in practice it can be a nightmare. Checking
parallel values line by line throughout two large reports or files is time-consuming,
error-prone, and likely to cause severe stress and job dissatisfaction amongst
those doing the checking. When there are many reports or data files, this process
is simply unrealistic.

The only realistic way to compare large numbers of parallel results is by
automating the process. We need to set up software to read through all
appropriate data, detect any differences in the two sets and report on them. If we
don’t automate this process, we are not going to run these tests regularly. Some
initial thought and configuration is required to set up the automation, but once this
has been done the same process can be used repeatedly over the application life-
cycle, each time software changes are made.

Checking Results

This is where X-Test steps in. X-Test is part of the X-Analysis tool suite, dedicated
to the problem of checking test data. X-Test provides a framework, tooling and a
user-interface to facilitate batch test result comparison, thus increasing reliability
and productivity of batch tests. Using the tool, we will dispose of the tools and a

methodical approach to -

Controlling Test Environments with X-Analysis and X-Test

* set up the test environments

+ define and populate checkpoints

* run the tests

» compare the resulting images

* review the differences in a user-friendly manner.

Building a Batch Test Environment

Choosing appropriate Test Cases

Not all parts of an application can or need to be systematically included in test
runs. We need to think carefully about whether we want or need to test individual
parts or the entire application, and what the consequences of each alternative
may be. Are some batch processes critical, easily separated from other
processes? Can we easily set up a valid stand-alone entry point to trigger this
particular part of the application. The choice of test cases is never simple, and
requires skilled and experienced users.

We will no doubt write down some test result specifications so we can check
results against something specific — but these test result specifications are
dependent on the actual changes. We will not be able to code result
specifications to specify that “everything other than what is specifically changed
should be unaltered”.

Performance Considerations - Disk space and performance are important factors in
batch testing. If the production database occupies 500GB of disk space, we may
not be able to make repeated copies of that base.

Firstly, available disk space may be insufficient. We will need several copies of
the database - different sets for the different versions, copies for the
checkpoints, and so on. If this adds up to terabytes of data, then this is unlikely
to be readily available.

Secondly, manipulating a database of this size requires extensive system
resources. Restoring or replicating such a large database may tie up a system for
hours or even days.

Test run times are also a potentially limiting factor. If a batch process requires a
complete weekend to run on a complete database, then careful planning must be
done to take into account the potential need for an unscheduled reload and
restart if errors are found.

Controlling Test Environments with X-Analysis and X-Test

Setting Up a Physical Test Environment

Data Extraction - Whatever our test cases and strategy, we will of course need a
copy of our data for test purposes. In some situations it will of course be the most
practical and option to copy the complete database. But generally, that option will
not be practical. In view of the constraints of time and volume, and the need to
focus our testing on manageable amounts of data, a complete copy is very often
too large. A data subset is the ideal support for our tests.

Nonetheless, in many organizations, we realize that data subsets are not used
extensively.

Why don’t we see test data subsets more often? Largely because there are no
practical means to build and manage them. Creating a coherent subset of data is
difficult to accomplish, and consequently is not retained as an option. Even when
an organization has taken the trouble to build a subset, there may be a
reluctance to refresh and rebuild, as the subset is somewhat unwieldy.

Extracting that coherent subset can indeed entail a vast amount of research and
work.

Imagine, for example, that we want to extract a simple subset for customer FRED
from our order entry application. We need to extract the customer master record
for primary key FRED, and any other customer files for that key. To be able to do
anything meaningful with that record, we also need to pull in all related data, both
from dependent files and owning files. Dependent data might include all order
headers for FRED, then all order details and order history for those order
headers. As each order detail record naturally has a reference to an item code,
we then need the item master record for the order details items. Customer FRED
may also belong to a particular company, so we will need that company header
record. And so on.

If this needs to be done manually, it may take days or even weeks to achieve
coherent results. To even envisage extracting a data subset, we will at very least
need both a precise understanding of the data model to tell us which files are
related to which other files, and an automated means of copying the related data
into our test files.

Application Program and Data Objects - Locating and using the appropriate
application program objects is not generally an issue, as only one copy of
program objects is required on the system for multiple data environments. If we
are going to run tests to compare results over different versions, we simply need
to know how to implement the changes between versions in a controlled manner.

We may well not require the complete set of data files. A selection of the actual
data objects that are impacted by our test run will be sufficient. This will make
the test set smaller and therefore much easier to manipulate. Our challenge here
is to locate all of those impacted and related objects without any room for error.

Hiding Sensitive Data - Running our tests may also highlight the problem of

Controlling Test Environments with X-Analysis and X-Test

confidential data. The people running the tests may not be authorized to view the
data in the files. We may wish to scramble email addresses to make sure that no
e-mails are sent inadvertently to real customers. Whatever the reason, we may
need to change any sensitive data.

At the same time, while scrambling data sufficiently to make it unrecognizable
and untraceable, we have to avoid generating user-unfriendly gobbledygook
values such as a customer name of “lkjhdfpoi rltxcbg”: such values seriously
handicap any user interaction during tests, as the users are no longer able to
identify the values they see on screen or report.

The Tools for the Job

As in so many areas of software, we can use dedicated tools to increase our
productivity to a level where tasks that were previously unimaginable become
within easy reach.

We can use features of the X-Analysis tool suite to achieve simple and controlled
setup and execution of these potentially complex operations that are an integral
part of setting up a test environment. These include building a coherent data
(content) subset, identifying and isolating a coherent set of objects, and
automatic data encryption.

The X-Analysis cross-reference and data-model features make this possible.

Object Cross-Referencing - X-Analysis originally built its 20-year reputation by
providing reliable and wuser friendly application cross referencing and
documentation. The X-Analysis repository automatically builds a data-base of all
requisite object cross referencing information. This lets us determine instantly
which objects are related to which other objects, and how — read only, update,
etc. We can view that information graphically in the client.

Figure 1 shows a data flow diagram centred on a selected program.

Controlling Test Environments with X-Analysis and X-Test

Program Centered Data Flow Diagram for WWCUSTS, Total Objects: 17 = [- @ [- [532
(WWCUSTS L
hark with Customers -

I Y —— D, — T, T W e S
CONHDRLT | (_CUSFL3 _— | (C_CUSGRP 3 (_DISTs 3 | SIMEN
by Debtor Sites by Mumber Cuskomer Groups Distribukars Salespersons

Cankract e e— —=
WCUSTSD [CUSFSEL [CUSGRSEL [CUSTMNTL B [DISTSSEL
Wiork with _ustomer Site Cuskomer group Zustomer Dekail Distributor
Cuskomers — Selection = Selection Maintenance M Selection
s P ~ __,_,_,—-—-_-—-—___‘
SLMEMNSEL WWCONHDR WWTRNHST XBCCLMSG 7_,__@__,_._.«
Salespersons Whark with Crders Wark. with Clear a Message Purchases
Selection — —=*| transackion histary QuEUE e
b A b A 5, A b, A e —

Figure 1: A program-centered Data Flow Diagram

The data flow diagram shows us which objects are in contact with which other
objects, and how. A simple color-coding tells us instantly what is going on.

Data Modeling - X-Analysis provides a unique reverse-engineering data modeling
feature, which examines the system and automatically builds complete entity-
relationship data. It does this by examining in detail the database descriptions,
the program code to find file fields that are used as access to other file fields,
and by verifying the actual data in the database files. In this way, X-Analysis
provides relationship details and foreign key details from an existing and
undocumented database.

Figure 2 illustrates an data model extract centred on one particular file, with the
appropriate relationship key details in the lower panel.

Controlling Test Environments with X-Analysis and X-Test
ZAM4ACDEM XFILE QCEBLSRC DELIYA
BL Source File Delivery Areas
ORDSTS DISTS PTYPES CUSGRP
COrder status descripkion Distributors Producks Cuskomer Groups
*, TTme— w4
h, — o
e [s
\ N
TRNTYP CONHDR CUSTS CUSF
Transaction bype Conkract Header = Purchases = Sites
descripkion
__'———_______ |I\\ I _______——-‘__
— N
—L
STOMAS CNTALCS I', CONDET SECF
1
Stare Master Carkacks I'. - Cankrak Detail Security Codes
1
III
— 1
———_-_____ .-'x) _____-‘——_
STKMAS STKBAL SLMENM NAMESIDX
Product Masker Stock Balances Salespersons Mames Index
Figure 2: Viewing part of a data model

Application Area Management - X-Analysis provides facilities for subdividing an
application area into groups of objects that meet user defined selection criteria.
These criteria might be based on function or even generic name. When we
associate an object with an application area,

X-Analysis then uses the
sophisticated cross-reference and data model information to automatically include

all the related elements such as programs, displays, or files that we need in our
application area. For our test environment purposes, we’d probably start from one
or more programs or functions and automatically build up the list of all related
objects.

Figure 3 shows how

using object cross-referencing and data-modelling
information, X-Analysis can propose simple rules to identify all related objects in
one simple automated step.

Controlling Test Environments with X-Analysis and X-Test

& Add 'CUSTS' to Application Area with Related Objects X
Application Area Descripkion
MVCPROCESS Mwvcprocess Demo app area
TEST tesk
< |

Ciptions for Related Objecks

Inu:	uu:	e cascading set of dependent files w			
In	:	uu:	e cascading set of owning files W		
In	:	l.		:	e programs referencing this file W

Iru:Iun:IE: programs referencing any included files

[oK] [Cancel

Figure 3: Rules for including an object in an application area

Application Area management also provides an option to build a new library
containing all objects from that area, which we can use if we are pinpointing parts
of an application.

Data Subsets - The subset feature uses the data model derived by X-Analysis to
drill down through the complete data and extract all related data from initial seed
record values. We specify the seed values we need to get the process started,
then the data model takes over.

Figure 4 shows a user specifying a seed value. As X-Analysis has built the data

model and knows where related data is to be found, this is all we need to extract
a coherent subset.

10

Controlling Test Environments with X-Analysis and X-Test

& SubsetfArchive Filter Criteria (SALES)

Filter Criteria

Physical Files | CUSTS W

Boolean Field Mame Cperator Field value
IF _uskomer ¥ | Equal ko (B FRED

Cuery Yiewer

SELECT * FROM CUSTS WHERE ("CUSTS"."$WBCCZD"="FRED")

[Save ” Return]

Figure 4: Entering a subset seed selection criterion
Once the subset seed values have been set up, we run the subset process which

builds data in an appropriate library. Figure 5 shows the dialog from a simple
right-click on the application area to run the actual sub-setting process.

& Subset Data [5_<|

%-Ref Library | |

Appication Area | |

Subset Library | ORDERSS1 |

Include Crvwners
Include All Dependents

Repicate Triggers/Constraints | *MO W
Diaka ption *REPLACE
[0K l [Cancel]

Figure 5: Running the subset extraction process
To sum up : this section has illustrated how X-Analysis provides all the necessary

functionality to extract and manage the objects and data we will need for our test
environments.

11

Controlling Test Environments with X-Analysis and X-Test

Setting Up Test Case runs

XA provides a complete control panel to help us configure the test environments
and run the tests. Figure 6 shows an overview of an application we have
configured for testing purposes.

Define the Test Process - We will need to know how to start our test process.
The test framework requires a simple command or program to call in a consistent
manner, to run a test process. Behind the initial call, there may of course be
complex things going on, but the entry point is simple. This may well require
some specific code such as a small CL script to enable X-Analysis to trigger the
test process correctly. One of the advantages of IBM i is that such batch scripting
is usually very simple to implement, so although the script will need to be
developed for each test case, this is not a major job.

When our test trigger command or program is ready, we just need to register it in
X-Test, so it can be run at will.

Set up Test Run Images - As we want to repeatedly compare data that we are
busy changing, we need to define various checkpoints where we can freeze each
successive step. We also need simple mechanisms to save the complete test
result image to a checkpoint at the appropriate moment, and to reinstate a
previous image when we wish to restart a particular run. The images will also be
used to compare any two test runs and detect differences.

Set up Field Exclusions - In general, not all fields in a file need to be examined
for differences. The most obvious example is a file in which each change updates
a times tamp in a dedicated field. Such fields will logically never have identical
values over any 2 runs. If this data was included when checking for differences,
every single record in the file would appear as different. Because of this, X-Test
provides a facility to specify any fields you wish to remove from the image
comparison.

We can implement all of the steps outlined above via simple right-click options in
the X-Test client user interface.

In Figure 6 we can see an application area [?-E% TESTRUM - Compare test results
called TESTRUN that we have configured for =} Test Process

our test run purposes. @ THARLIE - Image befare any kests
BRAYD - Results after run on YO
EgTAN
Eﬂ Application Area Diagram
-Q.' Data Model Diagram

G0 - Results after rum on Wil

Figure 6: An application configured for
test result processing

12

Controlling Test Environments with X-Analysis and X-Test

Running Test Cases

Once we have defined and configured our test environment, we want to run our
batch test process on both the old and new versions of our software, then isolate
the resulting data so we can compare results from those runs. This section
describes the method for running those tests.

Set up an initial checkpoint - We've built the data in the appropriate library.
We’ve got the correct software version (Let’s call it VO, i.e. before any changes).
We've set up X-Analysis with an application area and test process definition. So
we’re ready to run. Our first task is to save the image as an initial checkpoint
(we’ll call this CHARLIE). We’re going to need to start all of our tests from the
same point, and CHARLIE provides that point.

Run the test process on the original version - We trigger the test process from
the X-Test interface. At the end we save the results, for example to a new image
called BRAVO. This provides a Base checkpoint, where the run has taken place
without any software changes.

Restore the original image and implement changes - We should now restore
the image from checkpoint CHARLIE, then implement the requisite software
changes — this gives us Version V1. Implementing the changes will require some
thought, but should not pose any insurmountable problems! We may use a change
management tool to implement and remove a set of changes, we may use a
library in the library list which is blank for the base run on VO and then contains
the new object versions for the run on V1. Whatever process we use it should be
easy, automatic and reliable!

Run the test process on the new version - Now we need to run our tests again.
Once more we trigger the test process from the X-Test interface. Once more save
the results of the test run to a pre-defined checkpoint, for example to an image
called TANGO. We now have 2 separate images. BRAVO which contains the
results after running tests with VO, and TANGO which contains the results after
running tests with V1. We can now compare these results. We’ve done nothing
particularly difficult to achieve this, we just made 2 extra copies of our test result
data — but we can appreciate having simple and reliable tools that are dedicated
to these operations and keep track of where we stand and what we’ve done so
far.

We can repeat this as often as we like. Once the environment is configured, it
can be used over the entire application life-cycle.

Register spool files - As X-Test has triggered the batch job that represents the
test run, it is aware of any spool files produced by the job. X-Test is thus able to
locate and register any spooled output produced by the test run. As copies are
made of these spool files, we can compare spooled output the same way we
compare database files. If the test process itself submits extra batch jobs, we’ll
need to register the spool files manually with X-Test.

13

Controlling Test Environments with X-Analysis and X-Test

Identify differences in the results of the two test runs - At this point, the runs
are complete, the result sets have been saved in an appropriate image, and X-
Test knows about all of this. Now we want to spot the differences in the two result
sets. To compare the results of any two test runs, we just run the ‘Compare
Result’ process in X-Test, which is nothing more than a right-click option on the
appropriate test result name. We're prompted for name of the base test against
which we want to compare our test run results, and X-Test submits an automatic
batch job. This process reads through all files in the application area and builds
an internal database that records any differences it may find.

+-L CUSCARE

+ £ DETEST & Compare Result E
+ E{ MYZPROCESS - Re-Enginesring

{30 ORDERS - Order entry System Base Test

-0 PLAMN - Planning System ERAYO|

£ PRIMT - Printed documentation

+-£0 SALES - Sales System

+-£10 STOCK - Stack System

= E{ TESTRUM - Compare kest results
%T Test Process

© CHARLIE - Image before any tests

EBRAVD - Resulks after run on Y0
TAMGD - Results after rum on 41
Eﬁ Application Area Diagram

(0] 4 l [Cancel

Figure 7: Comparing two sets of test run results

Reviewing the Results

First View - The important difference is the first one you spot

The objective of these test runs is to compare the results. We need to know where
there are any differences between the two runs, and if so, where they occur. Once
the compare results option has been run, X-Test instantly show us a list of the files
where differences occur. We can expand the view to see the individual records that
register differences.

X-Test doesn’t necessarily show all of the records with differences — there is a
limit set by the user on the maximum number of errors we want to be located and
displayed. This will usually be set quite low, because what is important for us to
know is the fact that something has gone wrong in a given file. We don’t need to
know absolutely everything that has gone wrong in that file, this would potentially
provide far too much unhelpful information that we would waste time sifting
through.

14

Controlling Test Environments with X-Analysis and X-Test

Even if there are hundreds of records in error, we only really need to know ONCE
that something has gone wrong. We now know from X-Test that the results of our
test run TANGO are not identical to results from BRAVO. The data on screen
shows us where — in which file and which record — to look. Once we have spotted
an error, the issue would most probably be passed to the technical team who are
responsible for the application, to explain the difference and correct it if needs be.

Zoom into the details -

Record differences - X-Test does however display record details. We need to see
as precisely as possible what the differences are before we can analyze their
implications. The record detail display shows the data from the offending record
and also the same record from the base version, highlighting any fields that are
different in the two result sets. This makes locating any potential problems very
fast.

Figure 8 & Figure 9 show the detailed view of file records and differences. The
upper part of the screen shows the files where differences have been located,
expanded to show a summary of differing records. The lower part shows the field
values for an individual record, with both test runs side by side.

= '-3{ TESTRUM - Compare test resulks
% Tect Process
& CHARLIE - Image before any tesks

BRAND - Resulks after run on WO

= TANGD - Results after run an Y1

@ Compatison of Result with BRAVD

Lo application Arsa Diagram
1 Daka Model Diagram

Figure 8: Test Result Area

15

Controlling Test Environments with X-Analysis and X-Test

Comparison of Results with BRAYO - App Area: TESTRUN

Result Comparison
Changed Record ; "Store"{XWAATCS) was: UK now: SWI
Changed Record ; "Store"{WAATCS) was: UK now: SWI
Changed Record @ "Store"UEWAKCS) was: LK now: SWT
Changed Record @ "Store"UEWAKCS) was: LK now: SWT
Changed Record @ "Store"UEWAKCS) was: LK now: SWT
Changed Record @ "Store"UEWAKCS) was: LK now: SWT
Changed Record @ "Store"UEWAKCS) was: LK now: SWT
Changed Record @ "Store"COWAACSY was: LK now: SWT

= Stock Balances(STEBAL)
Changed Record : "Onhand Quantity"{EWEHOT) was: 0,0 nows
Changed Record : "Onhand Quantity"{EWEHOTY was: 0,0 nows
Changed Record : "Onhand Quantity"{EWEHOTY was: 0,0 nows
Changed Record : "Onhand Quantity"{EWEHOTY was: 0,0 nows
Changed Record | "Onhand Quantity"{SWEBHOTY was: 0,0 now
Changed Record ; "Onhand Quantity"{WEHOTY was: 0,0 nows
Changed Record ; "Onhand Quantity"{WEHOTY was: 0,0 nows
Changed Record ; "Onhand Quantity"{WEHOTY was: 0,0 nows

: "Pur Ord Balanc ! Jwas: 0.0 now: 1.0
.0y "Pur Ord Balance"CxWEBK QT was: 0.0 now: 1.0
0; "Pur Ord Balance"(XWEKQT) was: 0.0 now: 1.0
0; "Pur Ord Balance"(XWEKQT) was: 0.0 now: 1.0
.0; "Pur Ord Balance"{AWEBKQT) was: 0.0 now; 1.0
0
0
0

.0; "Pur Ord Balance"CxWEK QT was: 0.0 now: 1.0
.0; "Pur Ord Balance"CxWEK QT was: 0.0 now: 1.0
.0; "Pur Ord Balance"CxWEK QT was: 0.0 now: 1.0

—_ = = e e e e

<

-ﬂ Detailed Test Report Comparison &3
Detal Comparison of Tesk Result with BRAYD For File STEBAL - Rec Na 126

Field Test value Base Yalue
Share (W AACS) Raf Raf
Product COWABCD) oooia0 ooo100
Garp 1 (MMAGCD) 10 10

3 2 (X AHCD 10 10

Grp 3 (X AICD) 30 30

LM (200 EA EA
Crnand Quantity CAOBHOTY 1.0 0.0

Pur Ord Balance ($WEKQTY 1.0 0.0

Stk Bal Sales Crder (XWEM... 0.0 n.0

Stk Bal Produckion C3WFYQTY 0.0 0.0

Figure 9: Viewing record differences and their details

Journal images - Journaling provides invaluable help when we're trying to track
what has happened in a database file. If the data files are journaled during the test
run, X-Test will also let you scroll through the list of journal entries for a given
record, so you can see which program is responsible for any given change. You
can also zoom to view the details of the journal entry, to see exactly which fields
were changed on an update operation.

Refining by Field Exclusion

We may decide that the issue that caused the differences to occur for a given field
was not really a problem. If this is the case, we can change the field exclusion
criteria and run the comparison again. In this way, we refine the results each time,
and build up a robust test case which we can use over and over again.

16

Controlling Test Environments with X-Analysis and X-Test

Running batch tests and validating the results constitutes an essential part of any
major software change cycle.

Implementing a regular and rigorous batch test strategy requires very careful setup
of multiple environments, and thorough checking. These demanding and time-
consuming requirements often lead to a reticence in this area.

Using the dedicated tools for the job that X-Analysis and X-Test provide, these
requirements become simple to set up and manage. Checking an entire database
becomes a simple task, whether we want to make sure that changes between two
versions are as expected, or check that results of two test runs are identical.

Simon Savage
© Databorough

17

	Executive Summary
	Introduction
	The Challenges of Testing
	UI Testing
	Batch Testing
	Checking Results
	Checking Results

	Building a Batch Test Environment
	Choosing appropriate Test Cases
	Setting Up a Physical Test Environment

	The Tools for the Job
	Setting Up Test Case runs
	Running Test Cases
	Reviewing the Results
	First View - The important difference is the first one you spot
	Refining by Field Exclusion

	Summary

