
 D a t a b o r o u g h

Controlling Test Environments with
X-Analysis and X-Test

Simon Savage

WHITE PAPER

Table of Contents
Executive Summary...1
Introduction..2
The Challenges of Testing..2

UI Testing..3
Batch Testing...3
Checking Results...4
Checking Results...4

Building a Batch Test Environment...5
Choosing appropriate Test Cases...5
Setting Up a Physical Test Environment...6

The Tools for the Job..7
Setting Up Test Case runs..12
Running Test Cases..13
Reviewing the Results..14

First View - The important difference is the first one you spot...14
Refining by Field Exclusion..16

Summary..17

Controlling Test Environments with X-Analysis and X-Test

E x e c u t i v e S u m m a r y

Malfunct ions in software cost money. The cost of software defects in a product ion
environment is considered to be up to 100 t imes greater than that of the same
defect when detected and corrected in earl ier stages of development. An
undetected error can have potent ia l ly disastrous consequences for a business.

Only thorough test ing of changes before going l ive can achieve an acceptable level
of stabi l i ty before release. Tests may be of many kinds. Funct ional tests, val idat ing
and veri fying, manual or automated tests, user interface or batch tests… not to
mention al l forms of non-funct ional and technical test ing done by development
teams.

Complete “by the book” tests engender skyrocketing costs that are not compatible
wi th the cost-effect iveness inherent to business appl icat ions, so there wi l l a lways
be an element of compromise in the type and amount of test ing that is done.
Val idat ing the conformity of a new version to the (changed) user requirements and
veri fying that i t works f lawlessly are general ly the most obvious types of funct ional
tests to implement, and are well understood. Such tests wi l l by def in i t ion be
specif ical ly adapted to each change that is being implemented, so wil l never be the
same.

Verifying that nothing has been broken – regression test ing – is the second key
area of funct ional test ing. Here we wi l l very of ten be running the same tests over
and over again across many generat ions of changes. Because of th is, regression
tests are a natural candidate for automation. And as ever in the software wor ld,
automation is the key to achieving considerable gains in qual i ty, at a fract ion of
the cost.

This document is not a review of al l aspects of software test ing. I t i l lustrates how
the X-Analysis X-Test tool framework wi l l help you achieve repeated gains in
funct ional test operat ions by automating regression tests.

1

5

Controlling Test Environments with X-Analysis and X-Test

I n t r o d u c t i o n

What immediately springs to mind when we think about funct ional test ing is a user
(a developer in the ear ly stages, an end-user in the later stages) using the new
interface as thoroughly as possible and checking that the resul ts conform to
expectat ions.

This is a manual process, and is wel l adapted to each new change. Although such
manual test ing is general ly eff ic ient for locat ing defects in a software appl icat ion,
i t is a laborious and t ime consuming process. Furthermore, i t may not be effect ive
in locat ing some kinds of defect – notably, software regression, where the change
has broken something apparently unconnected that was previously working. I t ’s
general ly not a pract ical proposit ion to test every s ingle part of an appl icat ion to
make sure nothing has been broken. Regression test ing needs a different
approach.

We can use computer programs to automate some of the tests that would
otherwise need to be done manually. Once tests have been automated, they can be
run quickly and repeatedly. This is often the most cost effect ive method for
regression tests on software appl icat ions with a long maintenance l i fe, as even
minor changes can cause potent ial ly disastrous software regression.

Once such automated tests have been run, the biggest chal lenge is to detect
exact ly what has changed but should not have. Changes caused by the new
software version wi l l general ly be immediately obvious, as the testers and the test
process are very focused on these. But f inding errors in other unexpected parts of
an appl icat ion, errors that may be buried somewhere beneath huge amounts of
data, is a daunt ing situat ion, akin to the proverbial “needle in a haystack”.

X-Test provides a framework and the appropriate tools to let us configure and
automate test cases which wil l then run as batch jobs; to programmat ical ly detect
any unwanted differences in the results; and to review those differences in a user-
fr iendly manner. In this document we wil l examine:

• The chal lenges of test ing
• Where X-Test f i ts in
• Choosing appropr iate test cases
• Sett ing up and running test cases
• Reviewing the results

T h e C h a l l e n g e s o f Te s t i n g

To run the r isk of stat ing the obvious, the central chal lenge of the test process is
to f ind al l of the defects. We wi l l always worry that we have missed something
important. The more tests we run, the better our chances of f inding defects, though
even the most cr i t ical appl icat ions can never be guaranteed to be 100% bug-free!
As we have said, to enable greater coverage with f ixed resources, there is one

2

Controlling Test Environments with X-Analysis and X-Test

obvious direct ion to choose: that is to automate, to let the computer do as much of
the work as is possible.

Let ’s take a look at how we can automate our tests. We won’t be discussing the
earl ier stages of test ing as done by the development team, in which we ensure that
each indiv idual component does i ts job rel iably. I t ’s the later stages that interest
us here, when the ent ire appl icat ion is already up and running.

UI Testing

Although user interface test ing remains the most natural and probably the most
eff ic ient way to f ind defects in a new version of a business appl icat ion, i t is not the
object of this document and is only examined br ief ly in this sect ion. User interface
test ing fa l ls into one of two categor ies – manual tests or scr ipted tests.

Manual tests are the most reveal ing. A user- tester performs his tasks on the new
version in a safe test environment. The user wi l l see and report i f any bugs appear
or i f results do not conform to specif icat ions.

As users wi l l general ly be very concentrated on what they are doing, what they
expect to see, and what resul ts they actual ly do see, and also have the uncanny
abi l i ty to f ind strange and unexpected ways of doing things, most defects can be
found this way.

Automat ion is nonetheless an opt ion for UI test ing. I t general ly entai ls recording
and playback using scr ipts (there are many tools avai lable for this, such as IBM’s
5250 emulator, mult ip le open-source web interface scr ipt ing tools, etc).

The case for automation in UI tests is compromised by 2 basic issues. First ly we
lose the focus and the unpredictabi l i ty of user input, which are the strong points of
UI test ing. Secondly, even the most minor change in the interface wi l l render the
scr ipt inoperable – and the whole point is to test things that have changed. As a
result , scr ipts may need to be rewr it ten for each set of changes, which part ial ly
defeats the object of the exercise. Scripted automation in UI test ing is however
useful for regression tests on unchanged parts of the appl icat ion.

Batch Testing

Running test on the batch processes is a major part of the tests of any large
project. These tests are usual ly much simpler to run, as any changes are clearly
taken into account by the code and have no effect on the “outer shel l” scr ipt –
otherwise the code wi l l not work. For example, a monthly audi t program may have
undergone a extensive rewrite, but wi l l st i l l be tr iggered by an unchanged CALL
ORDERAUDIT command. No part icular user input is required.

3

Controlling Test Environments with X-Analysis and X-Test

As with UI test ing, batch tests fa l l into 2 categories -

• batch tests to veri fy expected changes and check they are working as per
spec.

• batch tests to check that nothing has been broken inadvertent ly – i .e.
regression tests.

Checking Results

How can we veri fy our test results on batch test runs?

UI errors are l ikely to be visual ly apparent when the user examines his screen and
pr inted output, and thus easi ly reported. Although some printed output may be
produced by the batch runs and may easi ly be visual ly checked, when we do need
to veri fy those test results – and also the UI test resul ts in some cases – we need
to check the data in the underlying database f i les. This is part icular ly true for
regression tests, and i t requires a different approach.

To veri fy the batch tests and check for regression, we need two sets of the
appl icat ion and database: one with the software version before the changes were
made; and the second with the new software version and identical data. Then we
can run the batch process on both sets and compare the resul ts from the two runs.
The differences wi l l tel l us i f we have introduced bugs.

For example, on a monthly sales report, f igures should al l be identical (unless
specif ic changes have been implemented on that report) . In a customer account
database f i le, the balance amount should ta l ly, etc.

This is s imple enough in theory, but in pract ice i t can be a nightmare. Checking
paral lel values l ine by l ine throughout two large reports or f i les is t ime-consuming,
error-prone, and l ikely to cause severe stress and job dissat isfact ion amongst
those doing the checking. When there are many reports or data f i les, this process
is s imply unreal ist ic.

The only real ist ic way to compare large numbers of paral lel results is by
automating the process. We need to set up software to read through al l
appropr iate data, detect any differences in the two sets and report on them. I f we
don’t automate this process, we are not going to run these tests regular ly. Some
ini t ia l thought and configurat ion is required to set up the automation, but once this
has been done the same process can be used repeatedly over the appl icat ion l i fe-
cycle, each t ime software changes are made.

Checking Results

This is where X-Test steps in. X-Test is part of the X-Analysis tool suite, dedicated
to the problem of checking test data. X-Test provides a framework, tool ing and a
user- interface to faci l i tate batch test result comparison, thus increasing rel iabi l i ty
and product iv i ty of batch tests. Using the tool, we wil l d ispose of the tools and a
methodical approach to -

4

Controlling Test Environments with X-Analysis and X-Test

• set up the test environments
• def ine and populate checkpoints
• run the tests
• compare the result ing images
• review the differences in a user-fr iendly manner.

B u i l d i n g a B a t c h Te s t E n v i r o n m e n t

Choosing appropriate Test Cases

Not al l parts of an appl icat ion can or need to be systematical ly included in test
runs. We need to think careful ly about whether we want or need to test indiv idual
parts or the ent ire appl icat ion, and what the consequences of each alternat ive
may be. Are some batch processes cr i t ical, easi ly separated from other
processes? Can we easi ly set up a val id stand-alone entry point to tr igger this
part icular part of the appl icat ion. The choice of test cases is never s imple, and
requires ski l led and experienced users.

We wil l no doubt wri te down some test result specif icat ions so we can check
results against something specif ic – but these test result specif icat ions are
dependent on the actual changes. We wil l not be able to code result
specif icat ions to specify that “everything other than what is specif ical ly changed
should be unaltered”.

Performance Considerations - Disk space and performance are important factors in
batch test ing. I f the product ion database occupies 500GB of disk space, we may
not be able to make repeated copies of that base.

First ly, avai lable disk space may be insuff ic ient. We wil l need several copies of
the database – different sets for the different versions, copies for the
checkpoints, and so on. I f this adds up to terabytes of data, then this is unl ikely
to be readi ly avai lable.

Secondly, manipulat ing a database of th is s ize requires extensive system
resources. Restor ing or repl icat ing such a large database may t ie up a system for
hours or even days.

Test run t imes are also a potent ia l ly l imit ing factor. I f a batch process requires a
complete weekend to run on a complete database, then careful planning must be
done to take into account the potent ial need for an unscheduled reload and
restart i f errors are found.

5

10

Controlling Test Environments with X-Analysis and X-Test

Setting Up a Physical Test Environment

Data Extraction - Whatever our test cases and strategy, we wil l of course need a
copy of our data for test purposes. In some situat ions i t wi l l of course be the most
pract ical and opt ion to copy the complete database. But general ly, that opt ion wi l l
not be pract ical. In v iew of the constraints of t ime and volume, and the need to
focus our test ing on manageable amounts of data, a complete copy is very often
too large. A data subset is the ideal support for our tests.

Nonetheless, in many organizat ions, we real ize that data subsets are not used
extensively.

Why don’t we see test data subsets more of ten? Largely because there are no
pract ical means to bui ld and manage them. Creating a coherent subset of data is
diff icult to accompl ish, and consequent ly is not retained as an opt ion. Even when
an organizat ion has taken the trouble to bui ld a subset, there may be a
reluctance to refresh and rebui ld, as the subset is somewhat unwieldy.

Extract ing that coherent subset can indeed entai l a vast amount of research and
work.

Imagine, for example, that we want to extract a s imple subset for customer FRED
from our order entry appl icat ion. We need to extract the customer master record
for pr imary key FRED, and any other customer f i les for that key. To be able to do
anything meaningful with that record, we also need to pul l in al l related data, both
from dependent f i les and owning f i les. Dependent data might include al l order
headers for FRED, then al l order detai ls and order history for those order
headers. As each order detai l record natural ly has a reference to an i tem code,
we then need the i tem master record for the order detai ls i tems. Customer FRED
may also belong to a part icular company, so we wil l need that company header
record. And so on.

I f this needs to be done manually, i t may take days or even weeks to achieve
coherent resul ts. To even envisage extract ing a data subset, we wi l l at very least
need both a precise understanding of the data model to tel l us which f i les are
related to which other f i les, and an automated means of copying the related data
into our test f i les.

Application Program and Data Objects - Locating and using the appropriate
appl icat ion program objects is not general ly an issue, as only one copy of
program objects is required on the system for mult iple data environments. I f we
are going to run tests to compare results over different versions, we simply need
to know how to implement the changes between versions in a control led manner.

We may wel l not require the complete set of data f i les. A select ion of the actual
data objects that are impacted by our test run wil l be suff ic ient . This wi l l make
the test set smaller and therefore much easier to manipulate. Our chal lenge here
is to locate al l of those impacted and related objects without any room for error.

Hiding Sensitive Data - Running our tests may also highl ight the problem of

6

Controlling Test Environments with X-Analysis and X-Test

confidentia l data. The people running the tests may not be authorized to v iew the
data in the f i les. We may wish to scramble emai l addresses to make sure that no
e-mails are sent inadvertent ly to real customers. Whatever the reason, we may
need to change any sensit ive data.

At the same t ime, whi le scrambl ing data suff ic ient ly to make i t unrecognizable
and untraceable, we have to avoid generat ing user-unfr iendly gobbledygook
values such as a customer name of “ lk jhdfpoi r l txcbg”: such values seriously
handicap any user interact ion dur ing tests, as the users are no longer able to
identi fy the values they see on screen or report.

The Tools for the Job

As in so many areas of software, we can use dedicated tools to increase our
product iv i ty to a level where tasks that were previously unimaginable become
within easy reach.

We can use features of the X-Analysis tool suite to achieve simple and control led
setup and execut ion of these potent ial ly complex operat ions that are an integral
part of sett ing up a test environment. These include bui ld ing a coherent data
(content) subset, ident i fying and isolat ing a coherent set of objects, and
automatic data encrypt ion.

The X-Analysis cross-reference and data-model features make this possible.

Object Cross-Referencing - X-Analys is or ig inal ly bui l t i ts 20-year reputat ion by
providing rel iable and user fr iendly appl icat ion cross referencing and
documentat ion. The X-Analysis repository automatical ly bui lds a data-base of al l
requis i te object cross referencing information. This lets us determine instant ly
which objects are related to which other objects, and how – read only, update,
etc. We can view that information graphical ly in the cl ient.

Figure 1 shows a data f low diagram centred on a selected program.

7

Controlling Test Environments with X-Analysis and X-Test

The data f low diagram shows us which objects are in contact wi th which other
objects, and how. A simple color-coding tel ls us instant ly what is going on.

Data Modeling - X-Analysis provides a unique reverse-engineering data modeling
feature, which examines the system and automatical ly bui lds complete ent i ty-
relat ionship data. I t does this by examining in detai l the database descript ions,
the program code to f ind f i le f ie lds that are used as access to other f i le f ie lds,
and by veri fying the actual data in the database f i les. In this way, X-Analys is
provides relat ionship detai ls and foreign key detai ls from an exist ing and
undocumented database.

Figure 2 i l lustrates an data model extract centred on one part icular f i le, with the
appropr iate relat ionship key detai ls in the lower panel.

8

Figure 1: A program-centered Data Flow Diagram

Controlling Test Environments with X-Analysis and X-Test

Application Area Management - X-Analysis provides faci l i t ies for subdividing an
appl icat ion area into groups of objects that meet user def ined select ion cr i ter ia.
These cr i ter ia might be based on funct ion or even generic name. When we
associate an object with an appl icat ion area, X-Analysis then uses the
sophist icated cross-reference and data model informat ion to automatical ly include
al l the related elements such as programs, displays, or f i les that we need in our
appl icat ion area. For our test environment purposes, we’d probably start from one
or more programs or funct ions and automat ical ly bui ld up the l is t of al l related
objects.

Figure 3 shows how using object cross-referencing and data-modell ing
information, X-Analysis can propose simple rules to identi fy al l related objects in
one simple automated step.

9

Figure 2: Viewing part of a data model

Controlling Test Environments with X-Analysis and X-Test

Appl icat ion Area management also provides an opt ion to bui ld a new l ibrary
containing al l objects from that area, which we can use i f we are pinpoint ing parts
of an appl icat ion.

Data Subsets - The subset feature uses the data model derived by X-Analysis to
dr i l l down through the complete data and extract al l related data from init ial seed
record values. We specify the seed values we need to get the process started,
then the data model takes over.

Figure 4 shows a user specifying a seed value. As X-Analysis has bui l t the data
model and knows where related data is to be found, th is is al l we need to extract
a coherent subset.

10

Figure 3: Rules for including an object in an application area

Controlling Test Environments with X-Analysis and X-Test

Once the subset seed values have been set up, we run the subset process which
bui lds data in an appropr iate l ibrary. Figure 5 shows the dialog from a simple
r ight-c l ick on the appl icat ion area to run the actual sub-sett ing process.

To sum up : this sect ion has i l lustrated how X-Analys is provides al l the necessary
funct ional i ty to extract and manage the objects and data we wil l need for our test
environments.

11

Figure 4: Entering a subset seed selection criterion

Figure 5: Running the subset extraction process

Controlling Test Environments with X-Analysis and X-Test

S e t t i n g U p Te s t C a s e r u n s

XA provides a complete control panel to help us configure the test environments
and run the tests. Figure 6 shows an overview of an appl icat ion we have
configured for test ing purposes.

Define the Test Process - We wil l need to know how to start our test process.
The test framework requires a s imple command or program to cal l in a consistent
manner, to run a test process. Behind the ini t ial cal l , there may of course be
complex things going on, but the entry point is s imple. This may well require
some specif ic code such as a small CL scr ipt to enable X-Analysis to tr igger the
test process correct ly. One of the advantages of IBM i is that such batch scr ipt ing
is usual ly very s imple to implement, so although the scr ipt wi l l need to be
developed for each test case, this is not a major job.

When our test tr igger command or program is ready, we just need to register i t in
X-Test, so i t can be run at wi l l .

Set up Test Run Images - As we want to repeatedly compare data that we are
busy changing, we need to def ine various checkpoints where we can freeze each
successive step. We also need simple mechanisms to save the complete test
result image to a checkpoint at the appropriate moment, and to reinstate a
previous image when we wish to restart a part icular run. The images wi l l also be
used to compare any two test runs and detect differences.

Set up Field Exclusions - In general, not al l f ie lds in a f i le need to be examined
for di fferences. The most obvious example is a f i le in which each change updates
a t imes tamp in a dedicated f ield. Such f ie lds wil l logical ly never have identical
values over any 2 runs. I f th is data was included when checking for differences,
every s ingle record in the f i le would appear as di fferent. Because of th is, X-Test
provides a faci l i ty to specify any f ields you wish to remove from the image
comparison.

We can implement al l of the steps out l ined above via s imple r ight-c l ick opt ions in
the X-Test c l ient user inter face.

In Figure 6 we can see an appl icat ion area
cal led TESTRUN that we have configured for
our test run purposes.

12

Figure 6: An application configured for
test result processing

Controlling Test Environments with X-Analysis and X-Test

R u n n i n g Te s t C a s e s

Once we have def ined and conf igured our test environment, we want to run our
batch test process on both the old and new versions of our software, then isolate
the result ing data so we can compare results from those runs. This sect ion
describes the method for running those tests.

Set up an init ial checkpoint - We’ve bui l t the data in the appropriate l ibrary.
We’ve got the correct software version (Let ’s cal l i t V0, i .e. before any changes).
We’ve set up X-Analysis with an appl icat ion area and test process def ini t ion. So
we’re ready to run. Our f i rst task is to save the image as an ini t ial checkpoint
(we’ l l cal l this CHARLIE). We’re going to need to start a l l of our tests from the
same point, and CHARLIE provides that point.

Run the test process on the original version - We tr igger the test process from
the X-Test interface. At the end we save the results, for example to a new image
cal led BRAVO. This provides a Base checkpoint, where the run has taken place
wi thout any software changes.

Restore the original image and implement changes - We should now restore
the image from checkpoint CHARLIE, then implement the requisite software
changes – this gives us Version V1. Implementing the changes wi l l require some
thought, but should not pose any insurmountable problems! We may use a change
management tool to implement and remove a set of changes, we may use a
l ibrary in the l ibrary l is t which is blank for the base run on V0 and then contains
the new object versions for the run on V1. Whatever process we use i t should be
easy, automatic and rel iable!

Run the test process on the new version - Now we need to run our tests again.
Once more we tr igger the test process from the X-Test interface. Once more save
the results of the test run to a pre-def ined checkpoint, for example to an image
cal led TANGO. We now have 2 separate images. BRAVO which contains the
results af ter running tests with V0, and TANGO which contains the results after
running tests with V1. We can now compare these results. We’ve done nothing
part icular ly diff icult to achieve this, we just made 2 extra copies of our test result
data – but we can appreciate having simple and rel iable tools that are dedicated
to these operat ions and keep track of where we stand and what we’ve done so
far.

We can repeat this as often as we l ike. Once the environment is configured, i t
can be used over the ent ire appl icat ion l i fe-cycle.

Register spool f i les - As X-Test has tr iggered the batch job that represents the
test run, i t is aware of any spool f i les produced by the job. X-Test is thus able to
locate and register any spooled output produced by the test run. As copies are
made of these spool f i les, we can compare spooled output the same way we
compare database f i les. I f the test process i tself submits extra batch jobs, we’ l l
need to register the spool f i les manually with X-Test.

13

Controlling Test Environments with X-Analysis and X-Test

Identify differences in the results of the two test runs - At th is point , the runs
are complete, the result sets have been saved in an appropriate image, and X-
Test knows about al l of th is. Now we want to spot the differences in the two result
sets. To compare the results of any two test runs, we just run the ‘Compare
Result ’ process in X-Test, which is nothing more than a r ight-c l ick opt ion on the
appropr iate test result name. We’re prompted for name of the base test against
which we want to compare our test run results, and X-Test submits an automat ic
batch job. This process reads through al l f i les in the appl icat ion area and bui lds
an internal database that records any di fferences i t may f ind.

R e v i e w i n g t h e R e s u l t s

First View - The important difference is the first one you spot

The object ive of these test runs is to compare the results. We need to know where
there are any differences between the two runs, and i f so, where they occur. Once
the compare results opt ion has been run, X-Test instant ly show us a l is t of the f i les
where differences occur. We can expand the view to see the indiv idual records that
register di fferences.

X-Test doesn’t necessari ly show al l of the records wi th differences – there is a
l imit set by the user on the maximum number of errors we want to be located and
displayed. This wi l l usual ly be set quite low, because what is important for us to
know is the fact that something has gone wrong in a given f i le. We don’t need to
know absolutely everything that has gone wrong in that f i le, this would potent ial ly
provide far too much unhelpful information that we would waste t ime sif t ing
through.

14

Figure 7: Comparing two sets of test run results

15

Controlling Test Environments with X-Analysis and X-Test

Even i f there are hundreds of records in error, we only real ly need to know ONCE
that something has gone wrong. We now know from X-Test that the results of our
test run TANGO are not ident ical to results from BRAVO. The data on screen
shows us where – in which f i le and which record – to look. Once we have spot ted
an error, the issue would most probably be passed to the technical team who are
responsible for the appl icat ion, to explain the difference and correct i t i f needs be.

Zoom into the details -

Record dif ferences - X-Test does however display record detai ls. We need to see
as precisely as possible what the di fferences are before we can analyze their
implicat ions. The record detai l display shows the data from the offending record
and also the same record from the base version, h ighl ight ing any f ields that are
different in the two resul t sets. This makes locat ing any potent ia l problems very
fast.

Figure 8 & Figure 9 show the detai led view of f i le records and differences. The
upper part of the screen shows the f i les where differences have been located,
expanded to show a summary of differ ing records. The lower part shows the f ield
values for an indiv idual record, with both test runs side by side.

15

Figure 8: Test Result Area

Controlling Test Environments with X-Analysis and X-Test

Journal images - Journal ing provides invaluable help when we’re trying to track
what has happened in a database f i le. I f the data f i les are journaled during the test
run, X-Test wi l l also let you scrol l through the l is t of journal entr ies for a given
record, so you can see which program is responsible for any given change. You
can also zoom to v iew the detai ls of the journal entry, to see exact ly which f ie lds
were changed on an update operat ion.

Refining by Field Exclusion

We may decide that the issue that caused the differences to occur for a given f ie ld
was not real ly a problem. I f this is the case, we can change the f ield exclusion
cr i ter ia and run the compar ison again. In this way, we ref ine the resul ts each t ime,
and bui ld up a robust test case which we can use over and over again.

16

Figure 9: Viewing record differences and their details

Controlling Test Environments with X-Analysis and X-Test

S u m m a r y

Running batch tests and val idat ing the results const i tutes an essent ial par t of any
major software change cycle.

Implementing a regular and r igorous batch test strategy requires very careful setup
of mult ip le environments, and thorough checking. These demanding and t ime-
consuming requirements often lead to a ret icence in th is area.

Using the dedicated tools for the job that X-Analysis and X-Test provide, these
requirements become simple to set up and manage. Checking an ent ire database
becomes a simple task, whether we want to make sure that changes between two
versions are as expected, or check that results of two test runs are identical.

Simon Savage
© Databorough

17

	Executive Summary
	Introduction
	The Challenges of Testing
	UI Testing
	Batch Testing
	Checking Results
	Checking Results

	Building a Batch Test Environment
	Choosing appropriate Test Cases
	Setting Up a Physical Test Environment

	The Tools for the Job
	Setting Up Test Case runs
	Running Test Cases
	Reviewing the Results
	First View - The important difference is the first one you spot
	Refining by Field Exclusion

	Summary

