\V/

Databorough

Complexity Metrics and Difference Analysis
for better Application Management

Steve Kilner

WHiTE PAPER

Table of Contents

EXECULIVE SUIMIMATYciiiiiiiiiiieeiiee ettt e ettt e e et e ettt e e s e e eaaeeeaseeesnseeesnsaeesnseeeanssaaeeeessnssaeeeenn 1
L0 o1 o) £SO PSR PRI 2
The Science Behind Software Maintenance..........coc.eeiuiiiiiiiiiiiiiiieeieesee et 2
Why Audit and Metric Capabilities are Critical for Managing Legacy Applications.......................... 5
O VETVIEW ...ttt ettt ettt h et e bt et e bt e st e e bt e e ab e e bt e e et e e b e e eab e e beeeab e e bt e eabeenbeeembee bt e e enbeeeenneee 8
Aspects of Quality in Software Maintenance.cocueeuierieriiienie ettt eaee e 8
Translating Quality Into Measurable [temS...........cc.eieriiiiiiieiiiieceece e e 10
How Measurable Items Become Actionable...........cccooveiiiiiiiiniiniiiiiicieeeeseeee e 13
Uses of Historical and Time Series Information...........cooeeiiiiiiiiiiiiiiieceeceee e 14
VEISION COMPATISON....eeuiieniieeitietieeteeetieeteeeteeeteesseeeteesseeesseessteenseessseenseassseenseessseenseesanseeesnseeesnnseeenn 15
B LT 721 o1 U1 /SRR 18
Use Cases for Metrics Reporting and Difference Analysis........coccoeeeeeiieiiiiiiienieiiieieciceeeeeeie e 21
Find the Most Complex Code in MY SYSteIM......cccuuieriiiiriieeiieeiiee e eeiee e sree e e e e e seraeeeees 21
Reducing Size of Application and Maintenance Workload by Removing unnecessary Code.......... 23
Improving Project Management through Better Information.............cccoeecvieeeiiiiiiiiiiieeceeeeeeen 24
Cleaning Up your System to Recompile in its ENtirety.......ccccooueviiieniiiiiienieeiieie e 26
Targeting Top 1% of Code that makes your JOB Difficult..........cccceevviiiniiiiniiiiiieee e 27
Finding Programs most likely to Produce Defects when Modified...........c.ccooevviiiiiiniiiniiniineenn. 28
Identifying Unseen Risk in your APpliCatioN.........cccvveeriiieriiieeiieesiie ettt eeeesveeeeevaeee s 29
Monitoring Changes in Program Complexity to preserve System Value & Extend its life................ 30
Analyzing Metrics Time Series Data for Changes in System CompleXity.........cccceevvevveeeeenniiiieeennns 31

Analyzing Differences in Source Code and System Objects in different Versions............ccceeueeneee. 33

Complexity Metrics & Difference Analysis for better Application Management

Executive Summary

The most challenging task in IT programming is maintaining and enhancing existing
applications. This in fact represents the majority of worldwide programming
budgets.

Unlike new software development, maintenance work is significantly impacted by
characteristics of the software being modified. Modifying existing code can be
exceptionally difficult and prone to cost overruns, delays and defects.

This paper discusses how you can improve your maintenance results by gaining
quantifiable, measurable insights into your existing application. You can get
significant information for these kinds of questions:

* How difficult will it be to modify this program?

* This program is very complex to modify, should we look for an alternative design?
* How difficult will it be to test this program if we modify it?

* Where are there risks that my programmers are not seeing?

* Do my programmers’ estimates line up with the complexity of the programs?

* Is this program too complex to give to a junior programmer?

* The system is becoming more and more complicated, what’s the best approach to
simplifying it? Where do we start?

Many System i applications exceed a million lines of code. Over the span of their
lifetime the systems become more and more complex, seriously, and adversely,
impacting IT software projects and business objectives.

This paper discusses how to measure that complexity so you can act on it to lower
your costs, increase your throughput and improve your quality.

“You cannot manage what you do not measure.”

- Bill Hewlett, Hewlett-Packard

Complexity Metrics & Difference Analysis for better Application Management

The Science Behind Software Maintenance

The 1SO Software Quality Model defined in 1996 under 9126 and updated in 2005
under 2500n defines the means to measure the quality of a software application
with six main quality characteristics:

* Functionality
. Reliability
 Usability

+ Efficiency

. Maintainability
* Portability

Of particular importance to managers of legacy applications is that section called
“Maintainability” which can be broadly defined as the ability to make changes for
improving functionality, improving performance, meeting compliance requirements
or fixing defects. The Model defines four characteristics that describe in more
detail how maintainable a software system is:

. Maintainability
* Analyzability — the ability to locate and scope features or faults within the
code
* Changeability — the effort required to make changes to the software
« Stability — the likelihood that changes to the software will result in defects
+ Testability — the effort required to test changes to the software

Independently of project specifics, these characteristics of the software work in
concert with programmers’ skills and their tools to determine how well the IT
organization performs its role of supporting and enhancing applications.

Complexity Metrics & Difference Analysis for better Application Management

The primary factors in the success or failure of software maintenance tasks are the
programmers’ skills, tools and the traits of the software being maintained.

The Human Factor - “It is harder to read a program than write it.”

This familiar-sounding adage also sounds suspiciously like folk wisdom, but in fact
there is serious science behind it. For nearly 20 years the |EEE International
Conference on Program Comprehension has been meeting to research and discuss
the challenges of maintaining software applications.

Two of the key topics in this subject area are:

* The mental processes people use to understand software
* The characteristics of software that make it easy or difficult to understand

The ISO Software Quality Model described above addresses the second of those
points by stating that critical aspects of software quality are its analyzability,
changeability, stability and testability. While all of these characteristics ultimately
involve mental processes of people, they also lead to the hope that they that can
be measured in themselves and thus, fit into a quality management program, which
in turn should lead to increased productivity, programming throughput and higher
quality.

How then, can one measure analyzability? There is no doubt that there are certain
programs that, upon a little examination, lead one to quickly say, “This is very
complicated. | do not want to maintain this program!”

An experienced programmer may look at a program and come to that conclusion in
less than 60 seconds.

How does a programmer quickly assess the analyzability of a program?

That programmer is making a quick judgment on how much effort is required to
build mental models of control flow and data flow sufficiently complete and

Complexity Metrics & Difference Analysis for better Application Management

accurate to make software changes with an appropriate degree of confidence.
What did the programmer look at to make that judgment?
The Software Factor - Over the past four decades a number of formulas and

models have been developed that attempt to measure the complexity of software by
analyzing the source code. If these measurements are successful then it they will

give us a good understanding of all those maintainability characteristics.

What do these complexity models measure?

Essentially they measure the things that are used in the mental processes and
tasks of a programmer who is trying to understand a program:

Build a mental model of the control flow of the program; i.e, the sequence of
events and their conditioning.

Build a mental model of the data flow of the program; i.e., what data goes in,
how it’s transformed, and what goes out.

Map real world actions to actions observed in the code; e.g., “this is where we
give a discount to frequent customers”.

Engage in “feature location”, whereby the programmer is trying to find the
code that implements features that are relevant to the modification task.

Create and test out code modification hypotheses; i.e., “design” and “impact
analysis”.

Utilize “beacons” to do all of the above; i.e., scan code and comments for
keywords that signify relevance; e.g., a subroutine named WRITExxx probably
outputs some data.

Utilize “chunking” to gradually aggregate understanding of small pieces of

code into large and larger pieces.

Some of these processes are more measurable than others:

Control Flow — the actual control flow of a program is determined by the control
operations such as IF, DO, ELSE, etc., as well as the sequence of statements. If
we can measure the number and complexity of control flow statements, plus the
overall number of statements we can gain some insight into how challenging the
task is to learn a given program for the purpose of modifying it.

Data Flow — the data flow of a program is determined by files that are input, fields
that are transformed and files that are output. If we can measure the number and
complexity of such fields we can gain some insight into how challenging the task is
to learn a given program for the purpose of modifying it.

Map real world actions, feature location and beacons — you may wonder how an
earth these things could be measured, but in fact there are some indicators we can
use. Researchers have shown many times that well placed, well written comments
and informatively named program tokens can greatly improve program
comprehension.

Complexity Metrics & Difference Analysis for better Application Management

Chunking — Code that is well organized and structured into loosely coupled,
cohesive, visually distinct blocks is easier to mentally aggregate and comprehend
than piles of spaghetti code.

Databorough’s X-Audit tool provides metrics for many of these characteristics as
this paper describes in detail.

Why Audit and Metric Capabilities are Critical for Managing Legacy Applications

Consider these two facts:

* 75% of worldwide IT programming budgets are dedicated to maintaining an
enhancing existing software applications (Forrester Group)

* 40-60% of maintenance programmers’ time is spent simply trying to understand
the code they are working on (Software Engineering Book of Knowledge)

If you put those two facts together you come to the conclusion that the single most
expensive task in all of IT programming is programmers trying to understand code.

What are the impacts on IT and businesses of this maintenance challenge?

Costs are high: it is more expensive to deliver a given amount of functionality
to the business if it must be part of an existing application than if it is a new
application

Expenses diverted to the old rather than the new: the bulk of IT
programming budgets go to maintaining existing applications rather than
developing new applications that could more quickly provide competitive
advantages

Business opportunities missed: new business opportunities are missed or
delayed because IT cannot respond quickly or cost-effectively enough to
enhance existing systems to support new business opportunities

Operational and financial risks: changing highly complex, existing systems
can introduce production defects that pose operational or financial risks

Threat of non-compliance: the business risks not meeting regulatory
requirements in a timely manner if systems cannot be enhanced quickly enough

Why is it difficult to understand existing code?

At a very basic level there are two things involved, the programmer and the code.
Programmers may be under-equipped, for whatever reason, to do the job, and that
makes it difficult for them. Or, the code is in fact very complicated, and somewhat
defiant of human comprehension.

Complexity Metrics & Difference Analysis for better Application Management

What can be done to improve maintenance value delivery?

In his book examining over 12,000 software projects and their critical success and
failure factors, Applied Software Measurement: Global Analysis of Productivity and
Quality, long-time software metrics guru Capers Jones provides some insightful
numbers from his analysis of maintenance productivity and quality.

The following table shows factors that positively impact maintenance productivity,
and factors that negatively impact maintenance productivity.

Positive Factors Impact% |Negative Factors Impact%
Staff are maintenance specialists +35 Error-prone code -50
High staff application experience +34 Embedded variables, data -45
Table driven variables +33 Low staff experience -40
Low complexity code +32 High complexity code -30
Static analysis tools +30 No static analysis tools -28
Code Re-factoring tools +29 Manual change control -27
Complexity analysis tools +20 No defect tracking tools -22
Automated change control +18 No quality measurements -18
Quality measurements +16 Management inexperience -15
Formal code inspections +15 No code inspections -15
Regression test libraries +15 No annual training -10

Like many such analysis, some of the good and bad factors are just the flip side of
each other, but here is what stands out and should be heeded by the thoughtful IT
manager:

The dominant factors that affect maintenance productivity, costs and quality, both
good and bad, are related to the complexity and quality of the code, and the tools
available to deal with them.

Here is another view of that table highlighting the relevant factors, and the
solutions that Databorough delivers to directly address those factors.

Positive Factors Impact% |Negative Factors Impact%
Maintenance specialists +35 [Error-prone code (X-Audit) -50
High staff experience +34 [Embedded variables (X-Analysis) -45
Table driven variables (X-Analysis) +33 [Low staff experience -40
Low complexity code (X-Audit) +32 [High complexity code (X-Audit) -30
Static analysis tools (X-Analysis) +30 [No static analysis tools (X-Analysis) -28
Code Re-factoring tools (X-Redo) +29 [Manual change control -27
Complexity analysis tools (X-Audit) +20 [No defect tracking tools -22
Automated change control +18 [No quality measurements -18
Quality measurements +16 [Management inexperience -15
Formal code inspections +15 |No code inspections -15
Regression test libraries +15 |No annual training -10

http://www.amazon.com/Applied-Software-Measurement-Analysis-Productivity/dp/0071502440/ref=sr_1_1?ie=UTF8&s=books&qid=1290123460&sr=8-1
http://www.amazon.com/Applied-Software-Measurement-Analysis-Productivity/dp/0071502440/ref=sr_1_1?ie=UTF8&s=books&qid=1290123460&sr=8-1

Complexity Metrics & Difference Analysis for better Application Management

How can you start achieving these kinds of gains in productivity and quality?

Very simply, you need better information for management and better information for
programming.

Databorough supplies two essential tools to improve productivity and quality for
maintenance operations that directly address the above statistics as found in over
12,000 software projects:

X-Analysis — An application cross reference and static analysis tool that enables
managers, systems analysts and programmers to rapidly and thoroughly research
existing applications in support of application enhancement, debugging and
documentation tasks.

X-Audit — The focus of this paper - is a source code and object analysis system
that provides metrics, alerts and time series comparisons of the state of
your application to enable you to focus attention on the areas of your system
most in need of correction, improvement or attention.

With this information available you can begin to answer some truly important
questions:

* How can | find the most complex code in my applications?

* Can | reduce the size of my applications, and thereby the maintenance workload,
by removing unnecessary code?

* How can | improving my project management, estimating, scheduling, budgeting,
testing, etc., through the use of this information?

* How can | clean up my applications so they will recompile in their entirety?

* Is there a way to target the top 1% of my code that makes our job the most
difficult?

See the sections on Popular Use Cases for more examples and detailed
information.

Complexity Metrics & Difference Analysis for better Application Management
Aspects of Quality in Software Maintenance

As the earlier section, The Science Behind software Maintenance, describes, the
ISO Software Quality Model breaks down software quality into six characteristics,
one of which we are most concerned with as managers of legacy systems (shown
here broken down further):

. Functionality
. Reliability
 Usability
+ Efficiency
* Maintainability
* Analyzability — the ability to locate and scope features or faults within
the code
« Changeability — the effort required to make changes to the software

« Stability — the likelihood that changes to the software will results in
defects

« Testability — the effort required to test changes to the software
Portability

In this paper we are specifically concerned with software maintenance and how we
can obtain useful quality information by analyzing source code and other system
information. And even more specifically, we are concerned with how we can
quantify that information by casting it into a framework of metrics.

But let’'s first look in another direction and think about another set of ISO
standards, those that pertain to Software Maintenance. ISO 14764, Software Life
Cycle Processes for Maintenance describes four categories of maintenance
activities:

* Corrective — fix defects

* Adaptive — modify the software to keep it useful i.e. enhancements

* Perfective — improve either the performance or maintainability of the
software

* Preventive —preemptively detect or correct latent defects in the software

Various studies have shown that upwards of 80% of total activity is adaptive, in
other words, enhancements to the system. There is sometimes a view that most of
the work is corrective, but it has also been shown that many tasks presented by
users as bug fixes are in fact requests for changes in functionality. Many
maintenance organizations do not fully distinguish between corrective and adaptive
activities and often switch staff freely between these types of tasks.

Complexity Metrics & Difference Analysis for better Application Management

Key Principal: All Software Quality Declines Over Time

However the work is categorized and managed, over time, the quality of the
software goes down. In fact, unless actions are taken to correct it, it is completely
unavoidable that the quality of the software goes down over time:

* If the software is maintained without full regard to maintainability it will
necessarily become more complex, and thus its maintainability quality will decline,
or

* If the software is not maintained it will necessarily become less useful to the
evolving user organization, and thus its functionality quality will diminish

The Inevitability of Decline

Quality of Maintainability
Enhancements This goes down as

and corrections changes are made to the
software

Business Software
Requirements |- Codebase and
from Software Functionality

Quality of Functionality
This goes down if
changes are not made to
meet evolving needs

The evolution of software systems over time has been studied by a number of
researchers and academics. Professor Meir Lehman of Imperial College London
identified a number of observations of how software evolves over time in what is
often called The Eight Laws Of Software Evolution. For the IT manager with a big
picture of the forces at work in software maintenance it is worth having some
awareness of these forces:

1. Continuing change - software must be continually adapted or it will become
less and less satisfactory

2. Increasing complexity — as software is changed it becomes increasingly
complex unless work is done to mitigate the complexity
3. Relationship to organization - the software exists within a framework of

people, management, rules and goals which create a system of checks and
balances which shape software evolution

4. Invariant work rate — over the lifetime of a system the amount of work
performed on it is essentially the same as external factors beyond anyone’s
control drive the evolution

Complexity Metrics & Difference Analysis for better Application Management

5. Conservation of familiarity — developers and users of the software must
maintain mastery of its content in order to use and evolve it; excessive growth
reduces mastery and acts as a brake

6. Continuing growth — seemingly similar to the first law, this observation states
that additional growth is also driven by the resource constraints that restricted
the original scope of the system

7. Declining quality — the quality of the software will decline unless steps are
taken to keep it in accord with operational changes

8. Feedback system — the evolution in functionality and complexity of software is
governed by a multi-loop, multilevel, multiparty feedback system

Why is this important, or how is it useful?

The job of most IT managers is typically to get it done faster, better, cheaper.
(“pick two,” as the saying goes) Often unstated is the further directive to
continually improve in those measurements. Not just today, but next year, and the
year after.

But implicit in all of the above is that much of what you do today will slow you
down tomorrow. Unless, that is, you take action on the implicit advice of the second
law and do work to maintain your system’s maintainability.

And indeed, many IT organizations with a long view of the life of their software and
its responsiveness to business needs take proactive steps to

maintain maintainability
and
manage to maintainability

But how is that possible? How do you undertake a program of maintaining
maintainability and managing to maintainability?

For that, we return to the wisdom of Bill Hewlett:
“You cannot manage what you do not measure.”

Translating Quality Into Measurable Items

Again, this paper concerns itself with what aspects of quality that can be measured
by analyzing source code and other system information. What aspects of quality
cannot be measured this way? We cannot, for example, measure how well the
system functionality meets business needs, since we have no way in the system to
measure business needs. We can also do very little to measure system reliability —
though we could perhaps measure system availability, measuring defects calls for a
tool designed for that purpose.

10

Complexity Metrics & Difference Analysis for better Application Management

What can we measure by looking at the source code and system objects?

As mentioned earlier, there are some key mental processes that programmers
engage in when performing maintenance. If we can measure things that relate to
these processes we will get some understanding of the level of maintainability
quality:

Control Flow — what conditions control the program’s operations and what is
their sequence?

Data Flow — what are the files and fields that are input, how are they
transformed, how are they output?

Map real world actions, feature location and beacons — what is the quality of
names assigned to program tokens and the level of commenting?

Chunking - to what degree is the code loosely coupled and cohesive and
readable?

If these are the mental processes that impact maintainability, what be measured for
them?

Looking at this in strictly RPG terms we can define a number of aspects of the
source code that can help us measure these characteristics:

RPG Metrics that indicate comprehensibility of Control Flow

» Cyclomatic complexity — basically a count of Ifs, Dos, FORs, WHENSs, etc.
* Greatest depth of nested ELSEs.

* Number of GOTOs or CABxxs.

* Greatest depth of nested IF/ Dos.

* Greatest number of statements in an IF/DO block.
* Greatest depth of loops within loops.

* Greatest number of statements in a subroutine.

* Depth of subroutine calls.

* Uses RPG Cycle for processing.

* Number of statements with conditioning indicators.
*» Decision density.

* Number of delocalizing statements.

RPG Metrics that indicate comprehensibility of Data Flow

» Halstead volume — basically a measure of the number of distinct fields and their
uses

* Number of database files

* Number of device files

* Number of EXFMTs/ READs to display files

* Number of display file formats with fields that output to a database file

* Number of sub-files in program

* Number of called programs

11

Complexity Metrics & Difference Analysis for better Application Management

* Number of calling programs

* Number of fields whose value was set

* Number of fields whose value was used

* Number of global fields whose value was set
* Number of global fields whose value was used
* Number of files updated

* Number of program-described input files

* Number of program-described output files

* Number of applicable OVRDBFs

* Number of applicable OPNQRYF statements
* Average variable span by line numbers

* Total variable span by line numbers

* Average variable span by subroutine count

* Total variable span by subroutine count

* Number of delocalizing statements

RPG Metrics that indicate comprehensibility through Knowledge Mappability

* Number of non-hyper-local field names of less than x characters
* Number of lines of comments

RPG Metrics that indicate comprehensibility through Chunkability

e Number of actual lines of code

* Number of actual lines of comments

e Greatest number of statements in a subroutine

« Greatest number of statements in an IF/DO block

* Number of implicit global parameters in a procedure

* Number of delocalizing statements

* Maintainability index — a formula developed by HP through experience

e Number of /COPY members

* Number of statements changed/added in the last 30-60-90-180-360 days

* Number of months in the last 12 months that had one or more statements
added/changed

Some of these metrics are useful in more than one category and some do not fit
neatly into these categories or are not perfect indicators, but nevertheless, it
should be clear that there are in fact a number of useful metrics for understanding
maintainability and overall program complexity.

It should also be clear that these metrics can in fact be computed from typical
source code, and in fact, that is precisely what Databorough’s X-Audit tool delivers.

If you are an experienced programmer who is managing a large application, you
may look at this list and nod your head in recognition that many of these things
would be interesting to have in a sortable list.

But the real question is, how can these metrics make a meaningful difference?

12

Complexity Metrics & Difference Analysis for better Application Management

How Measurable Items Become Actionable

“What gets measured is what gets done.”
-Tom Peters

The following diagram shows the two primary ways in which software metrics can
help manage a software maintenance operation.

Software
| Codebase
\ I
I
I
Use maintainability | Engage in proactive
metrics to factor into | tasks to improve
ongoing project software
management | maintainability
I
I
Y
Maintainability
Metrics

The left box is meant to show that metrics information can be used to bring better
management and planning to your software projects. Some of the ways this
information can be used are:

* Adjust programming estimates, and therefore schedules and costs

* Decide where more thorough analysis is necessary

* Decide which resources are most appropriate for a task

* Develop more appropriate and detailed testing plans.

* Advise the business of additional project risks

* Decide on alternative design plans to minimize changes to highly complex code

For more information on how to use metrics for these purposes see the use case
Improving Project Management Through Better Information.

The right box is meant to show that metrics information can be used help you keep

your software in a more maintainable state and thus preserve its long term value
and ability to respond to business needs quickly and cost-effectively.

13

Complexity Metrics & Difference Analysis for better Application Management

This type of work can be analyzed in a couple ways, leading to tasks that:

» Refactor programs that cross a certain threshold of complexity, or,

» Refactor programs that have shown a large increase in complexity and are
expected to continue to do so

For more information on maintaining maintainability see the following use cases:

* Monitoring changes in program complexity to preserve system value and extend
its useful life

+ Targeting the top 1% of code that makes your job difficult

*» Finding programs most likely to produce defects when modified
* |dentifying unseen risks in your application

+ Cleaning up your system so it will recompile in its entirety

Uses of Historical and Time Series Information

The metrics discussed so far have been point in time metrics, in that they analyze
source code and system objects at the time the metrics data is generated. For
overall system management there are other useful perspectives that involve the
dimension of time and change.

One important perspective comes from understanding the change in the complexity
and maintainability of your system over time:

/ . ,f | [\ Metrics Time
Metrics data + f Metrics data I| — Series

| . .
| atTimeA \ at Time B | Analysis

1112011 4172011 TM/2011 10M1/2011 111/2012

In this case metrics data collected at two or more different points in time are
compared and the differences are shown.

Some of the purposes of this sort of analysis are:
» Determine the overall success of maintaining maintainability

14

Complexity Metrics & Difference Analysis for better Application Management

Identify programs that cross a defined threshold of maintainability into
unmaintainability and are thus candidates for Refactoring

Identify programs with sudden changes in complexity and that are forecast to
continue with that trend, and are thus candidates for Refactoring or other
attempts to keep maintainable

Identify increases in complexity where they were not expected, as a possible
indication of poor programming or design

See the use case Analyzing Metrics Time Series Data for Changes in System
Complexity for more information.

Version Comparison

Version comparison is a facility that enables you to compare two different versions
of your application at both the source code and object levels. Here are a few
common scenarios where this is useful:

Compare a version of the application in use in one location to the version in use
at another location

Compare a new version of a packaged product release to the version currently
installed in order to understand the differences

Compare the current state of the application to the state it was in at a point in
time in the past

Difference Analysis

A product such as Databorough’s X-Audit can do these comparisons and give
detailed reports on both source and object differences between the versions.

This information can point to changes that have to be made to bring two versions
into harmony, or to integrate a new version of the source. By comparing versions
from different points in time the analysis can reveal unexpected changes in the
system in the interim.

Information contained in such an analysis includes:

Files and programs that have been added, changed or deleted
Fields whose attributes have changed

Changes in database relationships and dependencies
Business rules that have been changed, added or deleted
Source statements that have been changed, added or deleted

15

Complexity Metrics & Difference Analysis for better Application Management

Source Comparison

The last type of analysis in the above list can become very involved as potentially
many source members may have been changed. It is important that a facility be
available to quickly drill down from a changed source member to the specific lines
of code that have been changed, added or deleted.

A source comparison tool is essential for analyzing the differences in source code
between the versions being compared. A good tool should show you:

* Which source members have been changed and allow you to drill down into:
* Which source statements have been changed, added or deleted

Here is an example of a source comparison; in this case two H specification
statements exist in the left hand version which do not exist in the right hand
version:

[Difference Anaysis £7 Source Compare 5- Source Compare .Ezm-.’:onwe Z., E° Source Compare . 2

Text Compare

CLISTIVINT 1 of XANACDEMCL CLSTMNT L of XAMNICDEM
HEFm—mm—mmmmmmm e T — ~
H*?COPYRIGHT DATARCROUGH LTD 2007 - JORGE H*?COPYRIGHT DATRBOROUGH LTD 2007 - JOE (o=
H*?PROGRAM: Customer Detail Maintenance H*?PROGRAM: Customer Detaill Maintenanc
H":'? _______________________________________ .
H DATEDIT(*YMD) H DATEDIT (*¥MD}
H debug{*\waj cm:ight{'rmtabotough Ltd. :_"'1."!i"l.'i‘t*f*if*f**f*ii*i**fi‘i*i‘ft‘tf‘tt**f!
H option (*srcstmt: *nodebugio: *showcpy) F*iF i le s

I E‘*Pi'!*'I"*****Rt’*ﬁ****t"****!*IP*****#*"** lT"*'k"*Qﬂ‘***t"***t**t’*ﬂ*l"#t"**ﬂ‘t"kﬁ"**’
F*7F i 1 & s FCUSTMNTLIEMCE E WORKSTN
et R E SRR SRR LS PR R E R E R L S ECUSTS UF A E K DISK
FCUSTMNTLFMCE B WORKSTH F 1
FCUSTS UF A E K DISK F3LMEN IF E K DISK
F INFD FCUSFL2 IF E K DISK
ESLMEN IF B ¥ DISK FCUSGRP IF E K DISK

PTF Analysis — A Special Case of Version Comparison

If you are using a packaged software application that you have customized to meet
your needs then you will probably have encountered the challenges that come
when the vendor provides a new release of the product. How do you integrate your
past changes with the new version of the software? What have you changed? What
have they changed?

This is in fact a serious challenge and potentially a great deal of analysis work.
The following diagram depicts this situation.

16

Complexity Metrics & Difference Analysis for better Application Management

Packaged
o Source and
Object data

Customization

_ — — — — — —p Sourceand
Object data

+

Now Rolease
of Packaged — PTF Analysis
Source and f—

\ Object Data L,

-

I I 1T 1 I I L I I I

2001 2002 2003 2004 2005 2006 2007 2008 2009 20010 2011 2012

In this case an analysis of the source and objects in the new release of a packaged
software product (bottom) are compared against the source and objects that have
been customized in the past (middle) and the current base installation of the
package (top).

This sort of analysis can be quite labor intensive but the use of a tool like
Databorough’s X-Audit PTF Analysis can save a great deal of time and prevent the
risk of mistakes.

The following types of conditions are analyzed and reported on. In these examples
“PTF library” refers to the new release of package changes and “customized”
library refers to the customizations that have been made over time to the base
package.

Modified - The object from the PTF library was found in one of the customized
libraries. The PTF object will have to be reviewed and changes applied in the
customized library must be manually applied to the object in the PTF library.

New - The object from the PTF library was not found in the base repository. The
PTF object can be placed in the base library.

Apply - The object from the PTF library was found in one of the base libraries but
not in any of the customized libraries. Therefore the PTF object can overlay the
object in the base library.

Refers - The object from the PTF library refers to one or more objects in one of the
customized libraries. The PTF object will have to be analyzed to make sure all
customized objects referred to still meet the requirements of this object.

Referenced - The object from the PTF library is referenced by an object in one of

the customized libraries. The customized objects will have to be reviewed to make
sure the PTF object will still interface properly to the customized objects.

17

Complexity Metrics & Difference Analysis for better Application Management

Testability

Testability is one of the characteristics of Maintainability, which, again, is one of
the 1ISO characteristics of software quality.

Testability and Metrics

Most metrics that pertain to complexity and maintainability, also pertain to
testability. If a program is more complex, and more difficult to maintain, it tends to
be more difficult to test. With perhaps a few exceptions, pretty much all of the
metrics in the section Overview: Translating Quality into Measurable Items impact a
program’s testability.

Improving Testability With Tools

Reducing code complexity can bring some relief in terms in testability, but more
likely to make a more dramatic and immediate impact on testability is the use of
tools.

Managing Code Complexity for Testability — Control Flow

The completeness of test plans is often measured in terms of coverage. There are
several levels or dimensions of coverage to consider:

Function, or subroutine coverage — measures whether every function or subroutine
has been tested

Code, or statement coverage — measures whether every line of code has been
tested

Branch coverage — measures whether every case for a condition has been tested,
i.e., tested for both true and false

Loop coverage — measures whether every case of loop processing has been tested,
i.e. zero iterations, one iteration, many iterations

Path coverage — measures whether every possible combination of branch coverage
has been tested. Large programs can have huge numbers of paths through them. A
program with a mere 20 IF, DO or WHEN statements can have over one million

different paths through it (paths = 2").

Removing redundant conditions, and organizing necessary conditions in the
simplest possible way help to minimize control flow complexity and thus minimize
both the probability of defects and the required testing effort.

Managing Code Complexity for Testability — Data Flow

Also of concern for managing testability is the impact of code implementation on
the complexity of data flow. This type of complexity can be measured in a few

18

Complexity Metrics & Difference Analysis for better Application Management

different ways:

Depth of transformation — A variable that is moved from an input file directly to an
output file is said to a transformation degree of 1. If it is first multiplied by 10, for
example, the degree is then 2. The more that data is transformed the more complex
the test plans must be.

Dispersion, or span of modification — If the statements that modify a given variable
are scattered around a program it will both be more likely to have defects and more
likely to require more testing. If a given variable is set three times in the span of
ten consecutive statements that is much less likely to produce defects or testing
challenges than if the variable is modified three times each in different subroutines
separated by 1,000 lines of code.

By considering these data flow complexity factors when designing the program
code the ultimate testability and quality of the program can be increased.

Using Tools To Improve Testability

Tools can be of great assistance in the testing effort, bringing gains in both
productivity and quality. Examples of tools are:

Complexity metrics — as this paper discusses, understanding the complexity
metrics of a program to be tested helps in preparing both project plans and testing
plans. See the use cases Improving Project Management Through Better
Information and Finding Programs Most Likely To Produce Defects When Modified
for more information.

Generation and Validation of Test Plans — see the section immediately below for
more information on this.

Tracking code and branch coverage — tools can be of great assistance in tracking
whether all statements and conditions in a program have been tested.

Generation and Validation of Test Plans
A common method of developing a test plan is to follow a hierarchy as follows:

— Business Processes
- Test Cases
- Test Scenarios

In System | applications a given interactive program might typically be thought of at
the test case level and have any number of individual test scenarios.

A very useful approach to developing the test case and test scenarios is to
translate the program into a UML Activity Diagram. This kind of diagram shows all
the different use paths a user can follow in executing the program and provides an
excellent foundation for the test scenarios. (note that these paths are not exactly
the same thing as the code paths described above, though they are obviously
related).

19

Complexity Metrics & Difference Analysis for better Application Management

Shown below is an example of a portion of an activity diagram as produced by
X-Analysis which can be used to improve testing productivity and quality.

WNCLETS Wark, wilh Cusboriers)

Z25A01 - Work, with Cuslorners (51)

rh
Bk Chsghany Deded i Chirige

ZFT1 - Wark with Cusbormers. (52)

th

Subwit,
Z2CFI - ‘Wark, with Custorers. (53)

h

ZACTOL - Wark, wilh Orders (51)

rh

Ak Tisglary/Dedete)
ZZFTOL - Wark, wilh Orders (52)

Corilirm, Subrnik
IO - Work with Orders (53)

rh

Lines

In the above diagram from Databorough’s X-Analysis UML feature, each connector
would typically be designated as a test scenario, with conditions, data, actions and

results defined for that function.

20

ZFTL - Cusbomer Debal Martenance (51)
Custorner Manbenance

th

Subwnil
ZFTI2 - Custorner Detal Mantenance (52)

h

]

ZATTIR - Wark, wilh brargackion Fislary (51)

rh

Akl Tis gy Db
TEFTN - Werk with brarsackion biskory (52)

th

Submik
ZICNFL - Work: with transaction hiskary (53)

th

Complexity Metrics & Difference Analysis for better Application Management

Use Cases for Metrics Reporting and Difference Analysis

Find the Most Complex Code in My System

Why it’s important and valuable
There are three categories of reasons for why this is valuable information:

1. Project planning — With complexity metrics you can make more fine-grained
judgments about the strategy and planning of your projects. See the use case
about improving project management for detailed information.

2. Proactive complexity mitigation — IT managers with a long term view of their
system’s health take proactive measures to prevent their code from becoming
excessively complex. See the use case about extending the life and value of
your system for more information on this perspective.

3. Design recovery and migration — If you are extracting business rules or
migrating your code to another language you may want to plan on manual,
corrective activity to deal with overly complex code.

What information is needed and why

In this use case example we will use either or both of the basic complexity reports
that are pre-configured in X-Audit:

1. COMPLEXP — metrics by program, or
2. COMPLEXS — metrics by subroutine

Both of these reports have the same data except that the latter also has subroutine
names, giving more detailed results. Otherwise, both of these contain the same
metrics:

* Number of actual lines of code

* Greatest number of source records in a subroutine

* Greatest number of statements in an IF/DO block

» Cyclomatic complexity

» Halstead volume

* Maintainability index

* Number of virtually global variables

» Total or average variable span by line number or subroutine
» Decision density

* Number of database files

21

Complexity Metrics & Difference Analysis for better Application Management

* Number of called programs

* Greatest depth of nested IF/ DOs

* Greatest depth of nested ELSEs

* Number of GOTOs or CABxxs

* Greatest depth of loops within loops
* Decision density

These reports both select all objects with an attribute of RPG or RPGLE.

A little bigger picture: X-Audit provides a number of metrics for evaluating
complexity. There are three ways to think about measuring the complexity of your
code:

1. Using traditional, cross-language metrics, such as Cyclomatic Complexity,
Halstead Volume and Maintainability Index.

2. Using additional metrics provided by X-Audit that are more language and
System i specific.
3. Using your own custom metrics:
A) Computed by you using the provided X-Audit formula, which enables
you to combine either of the above metrics.

B) Writing your own code analysis programs and creating your own
application-specific metrics using the X-Audit user exit program
facility.

Evolving the Most Representative Metrics

Eventually you will want to decide on which metrics best represent complexity in
your application. These might be one or more of the pre-packaged metrics or some
combination of them that you perform your own customized computations on.

How to generate the report

Select either of the above reports and click on Run Metrics Report on the main
X-Audit screen.

If you want to modify either of these reports you can make a copy of it and change
any of the parameters.

Analyzing the Results

The first time you see the results of this report you will realize how much
measurable information you’ve been missing. You will want to play with the data in
a number of ways to develop a model of which metrics give you the best indication
of your own system’s complexity. Here is an example of a screen-shot for a shorter
version of the above reports:

22

Complexity Metrics & Difference Analysis for better Application Management

Obj BaseComplex|Maintldx | DecDensity |VarSpan LocC
AT201R2 94 94 100 109 3,384
AT144R 28 23 77 86 3,784
AT200R 88 85 92 96 5,984
AT198R 84 85 79 78 6,720
AT192R 23 93 91 82 6,142
AT156R 71 81 20 72 4,899
AT201R 56 46 52 56 3,024
AT110R 24 17 17 21 064
AT178R 23 19 12 4 255
AT112R 15 5 13 21 340

In this example all the metrics except Lines Of Code have been normalized to a
scale of 1-100. Doing this helps read the results and also facilitates combining
individual metrics into combined, weighted scores.

Also in this example note that the first metric, “Base-Complex”, is a custom, user-
defined metric that is comprised of several other metrics that the user has decided
most accurately convey complexity in this particular application.

Note that this is sorted by Base-Complex, and note how Lines Of Code does not
correlate well to complexity. This has been shown by many studies over the years —
Lines of Code is a poor indicator of complexity.

Reducing Size of Application and Maintenance Workload by Removing unnecessary Code

Why it’s important and valuable

Many systems accumulate dead objects or dead code with little apparent harm. The
key word there is “apparent”. Many IT organizations waste an unknown number of
hours maintaining, recompiling and testing objects that are no longer actually in
use. Over a period of years the number of these objects tends to pile up, as does
the amount of wasted effort.

What information is needed and why

In this use case example we will use either or both of the unused object reports
that are pre-configured in X-Audit:

1. UNUSEDOBJ - unused objects, based on object description last used date

2. UNUSEDCOD - unused sections of code e.g., subroutines or procedures not
called

23

Complexity Metrics & Difference Analysis for better Application Management

How to generate the report

Select either of the above reports and click on Run Metrics Report on the main X-
Audit screen.

If you want to modify either of these reports you can make a copy of it and change
any of the parameters. (See section How the Product Works for more information
on the screen options available to you)

Analyzing the Results

The two reports work very differently and lead to different tasks you will want to
undertake to reduce your maintenance workload.

UNUSEDOBJ - this report looks at the last used date from System i object
description data. Be sure you understand exactly how the last used date is set and
reset on the System i for objects before archiving them.

UNUSEDCOD - this report lists subroutines and procedures that have zero calls to
them within their program. These represent sections of code that can be deleted.

Be sure you follow good source management procedures, including archiving,
before deleting code.

Improving Project Management through Better Information

Why it’s important and valuable

With complexity metrics you can make more fine-grained judgments about the
strategy and planning of your projects. Complexity information can help you:

a) Adjust programming estimates, and therefore schedules and costs
b) Decide where more thorough analysis is necessary

c) Decide which resources are most appropriate for a task

d) Develop more appropriate and detailed testing plans

e) Advise the business of additional project risks

—h
-

Decide on alternative design plans to minimize changes to highly complex code

What information is needed and why

This use case utilizes your evolved complexity metrics — the ones that best
represent complexity in your system.

How to Apply Metrics to Project Management

Improving Estimates

24

Complexity Metrics & Difference Analysis for better Application Management

Research studies have shown that presenting information to programmers about
the program they will be working on materially affects their estimates of the work to
be done. By supplying some facts to supplement their intuition and experienced
based judgment, you can obtain more realistic estimates of the amount of effort
involved. Examples of what can improve the quality estimates include:

* Number of calls to a subroutine to be changed

* Number of calls made to a subroutine

* Number of uses in a program of a variable to be changed

* Number of uses in a program of a file to be changed

* Cyclomatic complexity or other IF/DO metrics of code to be changed
* Number of files, input formats and/or subfiles in a program

* Number of statements in relevant programs, subroutines, or large IF/DO blocks
to be changed

Decide Where More Thorough Analysis is Necessary

By wunderstanding the complexity structure of a given program requiring
modification, a manager can be sure a programmer has delivered a quality estimate
by understanding what subroutines require changes and then comparing the
programming estimates against the complexity metrics for those subroutines.

If the values of certain variables in the program will be affected then the manager
can also examine how many uses of the variables exist in the program, thus
understanding the potential impact of the changes, and the amount of impact
analysis required to do a quality job.

For example, there is a large difference in the amount of analysis work required
between adding a few lines of code to a simple section of the mainline that does
not affect variables, and adding a few lines of code located in the middle of deeply
nested IF/DO/ELSE blocks in a subroutine called from many places in the program,
where those changes affect variables widely used throughout the program.

Without doing the code research itself, a managers have had few options for
evaluating the estimates provided by programmers. By simply asking programmers
which subroutines they will be modifying the manager can now evaluate the
complexity metrics of those code sections and make a more informed judgment of
whether the programmer’s estimate is sufficiently considered.

Decide Which Resources Are Most Suitable For a Task

For a given project, once the list of programs to be modified has been compiled,
the IT manager can look at the metrics for the programs and decide which ones
require the use of resources with either special program knowledge or the ability to
handle highly complex programs. While most IT managers know this to some
degree from experience, the availability of metrics presents the basis for a more
quantifiable and consistent decision process.

25

Complexity Metrics & Difference Analysis for better Application Management

Develop More Detailed and Appropriate Testing Plans

By understanding which subroutines are to be modified, and what their complexity
metrics are, the project plan can be adjusted to account for additional testing for
more complex sections of code being changed. Useful metrics include all of the
Cyclomatic and IF/DO complexity metrics, as well metrics relating to numbers of
files and fields involved.

Advise the business of additional project risks

Complexity metrics represent tangible information that IT can present to the
business when explaining the challenges of particular projects. The metrics can be
used to explain why some tasks require more time than others, and why some tasks
are more likely to result in production defects.

By making complexity metrics a regular part of project plans presented to business
stakeholders, IT can shape the overall process to be based more on facts rather
than intuition and persuasion.

Decide on alternative design plans to minimize changes to highly complex code

For a given project, once the list of programs to be modified has been compiled,
the IT manager can look at the metrics for the programs being changed and decide
to investigate alternative design plans that might circumvent the most complex
sections of code being changed. Obviously, all projects have more chance of
success if they deal with the simplest possible code.

Cleaning Up your System to Recompile in its Entirety

Why it’s important and valuable

Why this is important almost goes without saying, but it often becomes one of
those things that is important but not urgent. What can make it more urgent is if
you plan on doing something like any of the following:

* Install a new release of packaged software
* Re-engineer or migrate your system
» Execute a large application enhancement project

What information is needed and why

There are a number of “alert” type metrics provided with X-Audit that are useful for
this purpose. Some of them directly indicate it is impossible to compile your system
accurately, others indicate generally undesirable conditions that are worth
investigating.

26

Complexity Metrics & Difference Analysis for better Application Management

No source for existing object

Source was changed after object was created

No object for existing source

Logical file is duplicate of another

Logical file is not used in any programs

File has no members

File is internally described

File format level used in program does not match database file
Program has hard coded libraries

How to generate the report

This

is a pre-configured report provided with X-Audit - see the category,

Source/Object Reports.

Targeting Top 1% of Code that makes your JOB Difficult

Why it’s important and valuable

Numerous software studies have shown that the majority of defects come from a
small percentage of programs, the majority of complexity in a system is contained
in a small percentage of programs, maintenance tasks tend to revolve around a
small percentage of programs, and so on. The Pareto Principle, aka, the 80-20
rule, doesn’t apply, it's more like the 90-10 rule, or the 95-5 rule, or, like the title
suggests, even the 99-1 rule.

Here’s a formula worth considering:

(most complex code) U (most frequently changed code) -> (most troublesome,
costly code)

In other words, the intersection of your most complex code and your most volatile
code deserves some serious attention!

What is it that makes code both complex and volatile?

Defect repair leads to changes

Hard coding leads to changes

Inadequate design vs. business or technical needs leads to changes
Changes lead to ever increasing complexity

Complexity leads to defects

And so on. Yes, there can be a vicious cycle at work.

27

Complexity Metrics & Difference Analysis for better Application Management

If you can identify your most complex, volatile code what can you do about it?

* Remove hard coding.
* Revisit other design aspects and see if it needs to be upgraded.

« Have managed code walk through to inspect it for defects — various studies
have put the cost of user-discovered defects at 10-100 times higher than
developer discovered defects

» Refactor the section of code to simplify it; possibly break it into smaller, more
manageable and more testable pieces.

What information is needed and why

The first use case, How Can | Find the Most Complex Code In My System showed
you how to do just that. What is needed for this use case is to combine that
information with information about what source code is changed and how
frequently.

How to generate the report

Depending on what you have done regarding defining which metrics you want to
use for complexity analysis, you may be able to simply add the X-Audit metric
SRCCHG360 to your metrics report. Alternatively you can run the report Source
Change Volatility under the category Source/Object Reports and export all results
to spreadsheets where you merge and analyze the complexity and volatility metrics
results.

X-Audit source volatility analysis works by analyzing source change dates in
source files. This provides limited information. X-Audit also provides an interface
for more detailed source change data that can be fed from your change
management system.

Finding Programs most likely to Produce Defects when Modified

Why it’s important and valuable

Knowing which programs are the most likely to produce defects when modified can
help you:

» Seek alternative design solutions that avoid those programs

* Adjust your programmer resource plan to place your most reliable programmers
on those challenging programs

* Allow for additional time and resources in project plans for more extensive
testing

* Alert business users to increased project risks

28

Complexity Metrics & Difference Analysis for better Application Management
 Decide to proactively refactor/redesign your programs

What information is needed and why

Most of the complexity metrics have some bearing on how likely it is that
modifications will lead to defects for a given program, but certain metrics are
generally more useful than others, in particular, those that relate to the difficulty of
impact analysis, or indicate program volatility:

* Number of virtually global variables

» Total or average variable span by line number or subroutine
* Decision density

* Greatest depth of IF/DO/ELSE blocks, or GOTO count

. Depth of subroutine calls

. Number of called programs or external procedures

* Number of statements changed in the last year

How to generate the report

This is a pre-configured report provided with X-Audit. Under the category, RPG
Complexity Reports, select and run the report, Defect-prone programs.

Analyzing the Results
By developing a practice of tracking defects and measuring them against these

defect analysis metrics, or others that you develop over time, you can refine your
ability to predict defect levels and plan accordingly.

Identifying Unseen Risk in your Application

Why it’s important and valuable
This topic divides into two categories of risks:

* Object level risks, related to system object management
* Code level risks, related to the code of programs

The reason why identifying risks is important is self-evident. Quantifying the
potential costs of the risks is also important, more so for weighing the cost of the
repair effort than for doing the analysis, which is as simple as running the report
mentioned below.

29

Complexity Metrics & Difference Analysis for better Application Management

What information is needed and why
There are many potential risk factors in a system, here are a few to consider:

* Programs have non-approved hard coded libraries

* No source code exists for an object

* The source code has been changed since the object was created
* The same field name is found in multiple files in a program

* RPG UPDATE operations are done without listing fields

+ RPG WRITE operations exist for input/update files and no CLEAR operation is
found

How to generate the report

This is a pre-configured report provided with X-Audit. Under the category,
Source/Object Reports, select and run the report, Unseen Risks.

Monitoring Changes in Program Complexity to preserve System Value & Extend its life

Why it’s important and valuable

The second law of software evolution states, “as a system evolves, its complexity
increases unless steps are taken to reduce it.” Or, as someone else said, "the act
of maintaining software necessarily degrades it.”

Your applications are an asset of your business. As you maintain them over time
you cause the value to depreciate by making them more complex and less
maintainable. Arguably you are also increasing their value by adding functionality,
but there is no doubt that applications become more time-consuming and costly to
maintain as they age.

Some IT organizations address this growing complexity by proactively maintaining
maintainability. After establishing a set of metrics that best represents complexity
for their applications, they periodically measure the complexity of the entire
system. Programs that either cross a threshold of complexity or show large
increases in complexity are candidates for refactoring.

What information is needed and why
This process is based on the set of metrics established in the first use case, How
Can | Find the Most Complex Code In My System? Armed with that information,

there are two basic approaches:

 Refactor programs that cross a certain threshold of complexity
» Refactor programs that have shown a large increase in complexity and are

30

Complexity Metrics & Difference Analysis for better Application Management

expected to continue to do so

The following diagram depicts the growth in complexity of a particular program and
shows that when it crossed a defined threshold of complexity it was Re-factored to
preserve its maintainability:

E Refactoring used 1o

. P _

Imprave rna_lntqlnat:-l ity Crver time, programs convenge
i ance critical line is crossead .
- argund the line of acceptable
= o maintainability
=]
i o o, i o Acceptable level of
" a—a o - & mainiainakility
£ ;
g — ‘\‘
i = - .
i Unmitigated revisions
E degrade maintainability

over time

o

Low --- Number of Revisions - High

It is useful to store metrics in order to compare them to future values of the
metrics. As the chart shows, analyzing the differences can reveal important
patterns of complexity as it relates to overall analyzability, changeability, stability
and testability.

This information should also be reviewed with information about past program
volatility and known plans for future projects.

Analyzing Metrics Time Series Data for Changes in System Complexity

Why it’s important and valuable

There are at least two good examples of the benefits available by examining
changes in complexity metrics over a period of time:

» Patterns in complexity growth and system growth that are obscured in the hurry
of day-to-day work can be seen and future development plans can be adjusted
or created based on the new understandings

* Observed increases in complexity that do not match expectations can reveal
poor design or programming practices, which in turn may lead to corrections,
better training or adjustments in future resource assignments

What information is needed and why

Obtaining this time series information is simply a matter of storing metrics at

31

Complexity Metrics & Difference Analysis for better Application Management

different points in time, calculating the differences and reporting on them. This is
best done when an organization has identified the specific metrics that give the
best indication of complexity and maintainability for the application.

Here is an example of a baseline metrics report at a given point in time. In this
case a baseline complexity metric has been customized by the user and the report
is sorted top to bottom in that sequence. Also, all metrics scores have been
normalized to a scale of 1-100.

Obj BaseComplex|Maintldx | DecDensity |VarSpan LocC
AT201R2 94 94 100 109 3,384
AT144R 28 23 77 86 3,784
AT200R 88 85 92 96 5,984
AT198R 84 85 79 78 6,720
AT192R 23 93 91 82 6,142
AT156R 71 81 20 72 4,899
AT201R 56 46 52 56 3,024
AT110R 24 17 17 21 064
AT178R 23 19 12 4 255
AT112R 15 5 13 21 340

At a later point in time we run the analysis again and get a similar set of results,
but the metrics are now different.

The following report shows which metrics have changed and by how much. A
positive number indicates the metric value has increased.

Time Series Report Showing Changes In Metrics

Obj BaseComplex| Maintldx| DecDensity| VarSpan LOC
AT192R 10 -3 1 -1 403
AT156R 9 -1 9 0 364
AT201R 9 -4 3 3 241
AT201R2 7 -5 2 2 176
AT200R 7 -3 1 6 228
AT198R 5 -1 5 7 -273
AT110R 3 0 -1 3 -36
AT112R 3 3 2 0 20
AT178R 1 0 7 5 48
AT144R -1 4 6 0 106

In this example the program with the largest increase in the base complexity metric
is listed first, showing an increase of 10. Correspondingly its maintainability has
dropped by 3 and the number of lines of code have increased by 403.

In this example what also stands out for the IT manager is that program AT201R

32

Complexity Metrics & Difference Analysis for better Application Management

has had a substantial increased in base complexity of 9, yet the IT manager knows
that he had only asked for a simple change to this program - that is worth
investigating.

Analyzing Differences in Source Code and System Objects in different Versions

Why it’s important and valuable

There are a number of circumstances where it is useful to compare different
versions of an application:

A software vendor delivers a new release of the application and you need to
know what has changed so you can confirm your customizations or interfaces
will work correctly

You operate with different versions of the software in different countries or for
different subsidiaries or divisions and you need to understand the differences
when planning for a new project

You need to compare a snapshot of the application from the past with the
current version in order to track down system changes that are causing
problems

A slightly different situation is when you have a packaged application for which
you have made customizations and the vendor delivers a new release and you
need to assess the impact of the new release on your customizations.

What information is needed and why

Performing an analysis for any of these circumstances involves comparing a large
set of system and source code information. At a high level you might investigate
some of these types of information for differences between the versions:

Commands

» Parameters

e Command processing and validity checking programs called
Database

* Fields

« Keys

* Relationships

 Logical files over each physical file
* Constraints

« Triggers

 Select/omit criteria

Programs

¢ Business rules

33

Complexity Metrics & Difference Analysis for better Application Management

« Bound modules

* Program references

e Subroutines

* Bound service programs
* Procedures

» SQL queries

* Source code
* Individual statements added, changed or deleted

Obviously this is a lot of information and accomplishing this task involves these
primary capabilities:

* Collecting and storing this information for two versions

. For the fourth case listed in the top section you actually need to triangulate
between three versions of the source and objects: the original base package,
your customizations, and the new version of the base package

* Analyzing the data and reporting on the differences.

Databaorough’s X-Audit product provides the functionality to do these kinds of
analysis.

Steve Kilner
© Databorough

34

	Executive Summary
	Concepts
	The Science Behind Software Maintenance
	Why Audit and Metric Capabilities are Critical for Managing Legacy Applications

	Overview
	Aspects of Quality in Software Maintenance
	Translating Quality Into Measurable Items
	How Measurable Items Become Actionable
	Uses of Historical and Time Series Information
	Version Comparison
	Testability

	Use Cases for Metrics Reporting and Difference Analysis
	Find the Most Complex Code in My System
	Reducing Size of Application and Maintenance Workload by Removing unnecessary Code
	Improving Project Management through Better Information
	Cleaning Up your System to Recompile in its Entirety
	Targeting Top 1% of Code that makes your JOB Difficult
	Finding Programs most likely to Produce Defects when Modified
	Identifying Unseen Risk in your Application
	Monitoring Changes in Program Complexity to preserve System Value & Extend its life
	Analyzing Metrics Time Series Data for Changes in System Complexity
	Analyzing Differences in Source Code and System Objects in different Versions

