
 D a t a b o r o u g h

Complexity Metrics and Difference Analysis
for better Application Management

Steve Kilner

WHITE PAPER

Table of Contents
Executive Summary...1
Concepts...2

The Science Behind Software Maintenance..2
Why Audit and Metric Capabilities are Critical for Managing Legacy Applications..........................5

Overview..8
Aspects of Quality in Software Maintenance..8
Translating Quality Into Measurable Items...10
How Measurable Items Become Actionable...13
Uses of Historical and Time Series Information...14
Version Comparison..15
Testability..18

Use Cases for Metrics Reporting and Difference Analysis..21
Find the Most Complex Code in My System..21
Reducing Size of Application and Maintenance Workload by Removing unnecessary Code..........23
Improving Project Management through Better Information..24
Cleaning Up your System to Recompile in its Entirety...26
Targeting Top 1% of Code that makes your JOB Difficult...27
Finding Programs most likely to Produce Defects when Modified..28
Identifying Unseen Risk in your Application..29
Monitoring Changes in Program Complexity to preserve System Value & Extend its life................30
Analyzing Metrics Time Series Data for Changes in System Complexity...31
Analyzing Differences in Source Code and System Objects in different Versions............................33

Complexity Metrics & Difference Analysis for better Application Management

E x e c u t i v e S u m m a r y

The most chal lenging task in IT programming is maintaining and enhancing exist ing
appl icat ions. This in fact represents the major i ty of wor ldwide programming
budgets.

Unl ike new software development, maintenance work is s ignif icant ly impacted by
character ist ics of the software being modi f ied. Modifying exist ing code can be
except ional ly diff icult and prone to cost overruns, delays and defects.

This paper discusses how you can improve your maintenance results by gaining
quanti f iable, measurable insights into your exist ing appl icat ion. You can get
s ignif icant informat ion for these kinds of quest ions:

• How diff icult wi l l i t be to modify this program?
• This program is very complex to modify, should we look for an alternat ive design?
• How diff icult wi l l i t be to test this program if we modify i t?
• Where are there r isks that my programmers are not seeing?
• Do my programmers’ est imates l ine up with the complexity of the programs?
• Is th is program too complex to give to a junior programmer?
• The system is becoming more and more compl icated, what ’s the best approach to

s impli fying i t? Where do we start?

Many System i appl icat ions exceed a mil l ion l ines of code. Over the span of their
l i fet ime the systems become more and more complex, ser iously, and adversely,
impacting IT software projects and business object ives.

This paper discusses how to measure that complexity so you can act on i t to lower
your costs, increase your throughput and improve your qual i ty.

“You cannot manage what you do not measure.”

 - Bi l l Hewlett , Hewlett-Packard

1

Complexity Metrics & Difference Analysis for better Application Management

C o n c e p t s

The Science Behind Software Maintenance

The ISO Software Qual i ty Model def ined in 1996 under 9126 and updated in 2005
under 2500n defines the means to measure the qual i ty of a software appl icat ion
with s ix main qual i ty character ist ics:

• Functional i ty
• Rel iabi l i ty
• Usabi l i ty
• Eff ic iency
• Maintainabi l i ty
• Portabi l i ty

Of part icular importance to managers of legacy appl icat ions is that sect ion cal led
“Maintainabi l i ty” which can be broadly def ined as the abi l i ty to make changes for
improving funct ional i ty, improving performance, meet ing compliance requirements
or f ixing defects. The Model def ines four character ist ics that describe in more
detai l how maintainable a software system is:

• Maintainabi l i ty
• Analyzabi l i ty – the abi l i ty to locate and scope features or faults within the

code
• Changeabil i ty – the effor t required to make changes to the software
• Stabi l i ty – the l ikel ihood that changes to the software wi l l result in defects
• Testabi l i ty – the effort required to test changes to the software

Independently of project specif ics, these character ist ics of the software work in
concert with programmers’ ski l ls and their tools to determine how wel l the IT
organizat ion performs i ts role of support ing and enhancing appl icat ions.

2

5

Complexity Metrics & Difference Analysis for better Application Management

The pr imary factors in the success or fai lure of software maintenance tasks are the
programmers ’ ski l ls , tools and the trai ts of the software being maintained.

The Human Factor - “ I t is harder to read a program than wri te i t . ”

This fami l iar-sounding adage also sounds suspic iously l ike fo lk wisdom, but in fact
there is ser ious science behind i t . For nearly 20 years the IEEE Internat ional
Conference on Program Comprehension has been meet ing to research and discuss
the chal lenges of maintaining software appl icat ions.

Two of the key topics in this subject area are:

• The mental processes people use to understand software
• The character ist ics of software that make i t easy or di ff icul t to understand

The ISO Software Qual i ty Model described above addresses the second of those
points by stat ing that cr i t ical aspects of software qual i ty are i ts analyzabi l i ty,
changeabil i ty, stabi l i ty and testabi l i ty. While al l of these character ist ics ult imately
involve mental processes of people, they also lead to the hope that they that can
be measured in themselves and thus, f i t into a qual i ty management program, which
in turn should lead to increased product iv i ty, programming throughput and higher
qual i ty.

How then, can one measure analyzabi l i ty? There is no doubt that there are certain
programs that, upon a l i t t le examination, lead one to quickly say, “This is very
complicated. I do not want to maintain this program!”

An experienced programmer may look at a program and come to that conclusion in
less than 60 seconds.

How does a programmer quickly assess the analyzabi l i ty of a program?

That programmer is making a quick judgment on how much effor t is required to
bui ld mental models of control f low and data f low suff ic ient ly complete and

3

Complexity Metrics & Difference Analysis for better Application Management

accurate to make software changes with an appropriate degree of confidence.

What did the programmer look at to make that judgment?

The Software Factor - Over the past four decades a number of formulas and
models have been developed that attempt to measure the complexity of software by
analyz ing the source code. I f these measurements are successful then i t they wi l l
g ive us a good understanding of a l l those maintainabi l i ty character ist ics.

What do these complexity models measure?

Essential ly they measure the things that are used in the mental processes and
tasks of a programmer who is trying to understand a program:

• Build a mental model of the control f low of the program; i .e, the sequence of
events and their condit ioning.

• Build a mental model of the data f low of the program; i .e. , what data goes in,
how it ’s t ransformed, and what goes out.

• Map real world act ions to act ions observed in the code; e.g., “ this is where we
give a discount to frequent customers”.

• Engage in “ feature locat ion”, whereby the programmer is trying to f ind the
code that implements features that are relevant to the modif icat ion task.

• Create and test out code modif icat ion hypotheses ; i .e., “design” and “ impact
analysis”.

• Uti l ize “beacons” to do al l of the above; i .e. , scan code and comments for
keywords that s igni fy relevance; e.g., a subrout ine named WRITExxx probably
outputs some data.

• Uti l ize “chunking” to gradual ly aggregate understanding of small p ieces of
code into large and larger pieces.

Some of these processes are more measurable than others:

Control Flow – the actual control f low of a program is determined by the control
operat ions such as IF, DO, ELSE, etc., as wel l as the sequence of statements. I f
we can measure the number and complexity of control f low statements, plus the
overal l number of statements we can gain some insight into how chal lenging the
task is to learn a given program for the purpose of modifying i t .

Data Flow – the data f low of a program is determined by f i les that are input, f ields
that are transformed and f i les that are output. I f we can measure the number and
complexity of such f ields we can gain some insight into how chal lenging the task is
to learn a given program for the purpose of modifying i t .

Map real world actions, feature location and beacons – you may wonder how an
earth these things could be measured, but in fact there are some indicators we can
use. Researchers have shown many t imes that wel l placed, wel l wri t ten comments
and informatively named program tokens can great ly improve program
comprehension.

4

Complexity Metrics & Difference Analysis for better Application Management

Chunking – Code that is wel l organized and structured into loosely coupled,
cohesive, visual ly dist inct blocks is easier to mental ly aggregate and comprehend
than pi les of spaghett i code.

Databorough’s X-Audit tool provides metr ics for many of these character ist ics as
th is paper describes in detai l .

Why Audit and Metric Capabilities are Critical for Managing Legacy Applications

Consider these two facts:

• 75% of worldwide IT programming budgets are dedicated to maintaining an
enhancing exist ing software appl icat ions (Forrester Group)

• 40-60% of maintenance programmers’ t ime is spent s imply trying to understand
the code they are working on (Software Engineering Book of Knowledge)

If you put those two facts together you come to the conclusion that the single most
expensive task in al l of IT programming is programmers trying to understand code.

What are the impacts on IT and businesses of this maintenance challenge?

Costs are high: i t is more expensive to del iver a given amount of funct ional i ty
to the business i f i t must be part of an exist ing appl icat ion than i f i t is a new
appl icat ion

Expenses diverted to the old rather than the new: the bulk of IT
programming budgets go to maintaining exist ing appl icat ions rather than
developing new appl icat ions that could more quickly provide competi t ive
advantages

Business opportunities missed: new business opportunit ies are missed or
delayed because IT cannot respond quickly or cost-effect ively enough to
enhance exist ing systems to support new business opportunit ies

Operational and financial r isks: changing highly complex, exist ing systems
can introduce product ion defects that pose operat ional or f inancial r isks

Threat of non-compliance: the business r isks not meeting regulatory
requirements in a t imely manner i f systems cannot be enhanced quickly enough

Why is it diff icult to understand existing code?

At a very basic level there are two things involved, the programmer and the code.
Programmers may be under-equipped, for whatever reason, to do the job, and that
makes i t d i ff icult for them. Or, the code is in fact very complicated, and somewhat
def iant of human comprehension.

5

Complexity Metrics & Difference Analysis for better Application Management

What can be done to improve maintenance value del ivery?

In his book examining over 12,000 software projects and their cr i t ical success and
fai lure factors, Appl ied Software Measurement: Global Analys is of Productiv i ty and
Quali ty, long-t ime software metr ics guru Capers Jones provides some insightful
numbers from his analysis of maintenance product iv i ty and qual i ty.

The fol lowing table shows factors that posit ively impact maintenance product iv i ty,
and factors that negatively impact maintenance product iv i ty.

Positive Factors Impact% Negative Factors Impact%
Staff are maintenance specialists +35 Error-prone code -50
High staff application experience +34 Embedded variables, data -45
Table driven variables +33 Low staff experience -40
Low complexity code +32 High complexity code -30
Static analysis tools +30 No static analysis tools -28
Code Re-factoring tools +29 Manual change control -27
Complexity analysis tools +20 No defect tracking tools -22
Automated change control +18 No quality measurements -18
Quality measurements +16 Management inexperience -15
Formal code inspections +15 No code inspections -15
Regression test libraries +15 No annual training -10

Like many such analysis, some of the good and bad factors are just the f l ip s ide of
each other, but here is what stands out and should be heeded by the thoughtful IT
manager:

The dominant factors that af fect maintenance product iv i ty, costs and qual i ty, both
good and bad, are related to the complexity and qual i ty of the code , and the tools
avai lable to deal with them .

Here is another view of that table highl ight ing the relevant factors, and the
solut ions that Databorough del ivers to direct ly address those factors.

Positive Factors Impact% Negative Factors Impact%
Maintenance specialists +35 Error-prone code (X-Audit) -50
High staff experience +34 Embedded variables (X-Analysis) -45
Table driven variables (X-Analysis) +33 Low staff experience -40
Low complexity code (X-Audit) +32 High complexity code (X-Audit) -30
Static analysis tools (X-Analysis) +30 No static analysis tools (X-Analysis) -28
Code Re-factoring tools (X-Redo) +29 Manual change control -27
Complexity analysis tools (X-Audit) +20 No defect tracking tools -22
Automated change control +18 No quality measurements -18
Quality measurements +16 Management inexperience -15
Formal code inspections +15 No code inspections -15
Regression test libraries +15 No annual training -10

6

http://www.amazon.com/Applied-Software-Measurement-Analysis-Productivity/dp/0071502440/ref=sr_1_1?ie=UTF8&s=books&qid=1290123460&sr=8-1
http://www.amazon.com/Applied-Software-Measurement-Analysis-Productivity/dp/0071502440/ref=sr_1_1?ie=UTF8&s=books&qid=1290123460&sr=8-1

Complexity Metrics & Difference Analysis for better Application Management

How can you start achieving these kinds of gains in productivity and quality?

Very simply, you need bet ter information for management and bet ter information for
programming.

Databorough suppl ies two essent ial tools to improve product iv i ty and qual i ty for
maintenance operat ions that d irect ly address the above stat ist ics as found in over
12,000 software projects:

X-Analysis – An appl icat ion cross reference and stat ic analysis tool that enables
managers, systems analysts and programmers to rapidly and thoroughly research
exist ing appl icat ions in support of appl icat ion enhancement, debugging and
documentat ion tasks.

X-Audit – The focus of th is paper - is a source code and object analys is system
that provides metr ics, aler ts and t ime series comparisons of the state of
your appl icat ion to enable you to focus attent ion on the areas of your system
most in need of correct ion, improvement or attent ion.

With this information avai lable you can begin to answer some truly important
quest ions:

• How can I f ind the most complex code in my appl icat ions?
• Can I reduce the size of my appl icat ions, and thereby the maintenance workload,

by removing unnecessary code?
• How can I improving my project management, est imating, scheduling, budgeting,

test ing, etc., through the use of this information?
• How can I c lean up my appl icat ions so they wi l l recompile in their ent irety?
• Is there a way to target the top 1% of my code that makes our job the most

diff icult?

See the sect ions on Popular Use Cases for more examples and detai led
informat ion.

7

Complexity Metrics & Difference Analysis for better Application Management

O v e r v i e w

Aspects of Quality in Software Maintenance

As the ear l ier sect ion, The Science Behind software Maintenance , describes, the
ISO Software Qual i ty Model breaks down software qual i ty into s ix character ist ics,
one of which we are most concerned wi th as managers of legacy systems (shown
here broken down fur ther) :

• Functional i ty
• Rel iabi l i ty
• Usabi l i ty
• Eff ic iency
• Maintainabi l i ty

• Analyzabi l i ty – the abi l i ty to locate and scope features or faults within
the code

• Changeabi l i ty – the effort required to make changes to the software
• Stabi l i ty – the l ikel ihood that changes to the software wil l results in

defects
• Testabi l i ty – the effort required to test changes to the software

• Portabi l i ty

In this paper we are specif ical ly concerned with software maintenance and how we
can obtain useful qual i ty informat ion by analyz ing source code and other system
informat ion . And even more specif ical ly, we are concerned wi th how we can
quanti fy that information by cast ing i t into a framework of metr ics .

But let ’s f i rst look in another direct ion and think about another set of ISO
standards, those that pertain to Sof tware Maintenance. ISO 14764, Software Life
Cycle Processes for Maintenance describes four categories of maintenance
act iv i t ies:

• Correct ive – f ix defects
• Adaptive – modi fy the software to keep i t useful i .e. enhancements
• Perfect ive – improve either the performance or maintainabi l i ty of the

software
• Prevent ive –preempt ively detect or correct latent defects in the software

Var ious studies have shown that upwards of 80% of total act iv i ty is adaptive, in
other words, enhancements to the system. There is sometimes a view that most of
the work is correct ive, but i t has also been shown that many tasks presented by
users as bug f ixes are in fact requests for changes in funct ional i ty. Many
maintenance organizat ions do not ful ly d ist inguish between correct ive and adapt ive
act iv i t ies and often switch staff freely between these types of tasks.

8

Complexity Metrics & Difference Analysis for better Application Management

Key Principal: All Software Quality Declines Over Time

However the work is categorized and managed, over t ime, the qual i ty of the
software goes down. In fact, unless act ions are taken to correct i t , i t is completely
unavoidable that the qual i ty of the software goes down over t ime:

• I f the software is maintained without ful l regard to maintainabi l i ty i t wi l l
necessari ly become more complex, and thus i ts maintainabi l i ty qual i ty wi l l decl ine,
or

• I f the software is not maintained i t wi l l necessari ly become less useful to the
evolv ing user organizat ion, and thus i ts funct ional i ty qual i ty wi l l diminish

The evolut ion of software systems over t ime has been studied by a number of
researchers and academics. Professor Meir Lehman of Imperial Col lege London
identi f ied a number of observat ions of how software evolves over t ime in what is
of ten cal led The Eight Laws Of Software Evolut ion. For the IT manager wi th a big
picture of the forces at work in software maintenance i t is worth having some
awareness of these forces:

1. Continuing change – software must be continual ly adapted or i t wi l l become
less and less sat isfactory

2. Increasing complexi ty – as software is changed i t becomes increasingly
complex unless work is done to mit igate the complexity

3. Relat ionship to organizat ion – the software exists within a framework of
people, management, ru les and goals which create a system of checks and
balances which shape software evolut ion

4. Invar iant work rate – over the l i fet ime of a system the amount of work
performed on i t is essential ly the same as external factors beyond anyone’s
control dr ive the evolut ion

9

Complexity Metrics & Difference Analysis for better Application Management

5. Conservat ion of famil iar i ty – developers and users of the software must
maintain mastery of i ts content in order to use and evolve i t ; excessive growth
reduces mastery and acts as a brake

6. Continuing growth – seemingly similar to the f irst law, this observat ion states
that addit ional growth is also dr iven by the resource constraints that restr icted
the or iginal scope of the system

7. Decl ining qual i ty – the qual i ty of the software wil l decl ine unless steps are
taken to keep i t in accord with operat ional changes

8. Feedback system – the evolut ion in funct ional i ty and complexity of software is
governed by a mult i- loop, mult i level, mult iparty feedback system

Why is this important, or how is it useful?

The job of most IT managers is typical ly to get i t done faster, better, cheaper.
(“p ick two,” as the saying goes) Often unstated is the further direct ive to
cont inual ly improve in those measurements. Not just today, but next year, and the
year after.

But implic i t in al l of the above is that much of what you do today wi l l slow you
down tomorrow. Unless, that is, you take act ion on the impl ic i t advice of the second
law and do work to maintain your system’s maintainabi l i ty.

And indeed, many IT organizat ions with a long view of the l i fe of their software and
i ts responsiveness to business needs take proact ive steps to

maintain maintainability
and

manage to maintainability

But how is that possible? How do you undertake a program of maintaining
maintainabi l i ty and managing to maintainabi l i ty?

For that, we return to the wisdom of Bi l l Hewlett :
“You cannot manage what you do not measure.”

Translating Quality Into Measurable Items

Again, this paper concerns i tself with what aspects of qual i ty that can be measured
by analyz ing source code and other system informat ion. What aspects of qual i ty
cannot be measured this way? We cannot, for example, measure how wel l the
system funct ional i ty meets business needs, since we have no way in the system to
measure business needs. We can also do very l i t t le to measure system rel iabi l i ty –
though we could perhaps measure system avai labi l i ty, measuring defects cal ls for a
tool designed for that purpose.

10

10

Complexity Metrics & Difference Analysis for better Application Management

What can we measure by looking at the source code and system objects?

As ment ioned earl ier, there are some key mental processes that programmers
engage in when performing maintenance. I f we can measure th ings that relate to
these processes we wil l get some understanding of the level of maintainabi l i ty
qual i ty:

Control Flow – what condit ions control the program’s operat ions and what is
their sequence?
Data Flow – what are the f i les and f ie lds that are input, how are they
transformed, how are they output?
Map real world actions, feature location and beacons – what is the qual i ty of
names assigned to program tokens and the level of comment ing?
Chunking – to what degree is the code loosely coupled and cohesive and
readable?

If these are the mental processes that impact maintainabi l i ty, what be measured for
them?

Looking at th is in str ict ly RPG terms we can def ine a number of aspects of the
source code that can help us measure these character ist ics:

RPG Metrics that indicate comprehensibil ity of Control Flow

• Cyclomatic complexi ty – basical ly a count of I fs, Dos, FORs, WHENs, etc.
• Greatest depth of nested ELSEs.
• Number of GOTOs or CABxxs.
• Greatest depth of nested IF/ Dos.
• Greatest number of statements in an IF/DO block.
• Greatest depth of loops wi thin loops.
• Greatest number of statements in a subroutine.
• Depth of subroutine cal ls.
• Uses RPG Cycle for processing.
• Number of statements with condit ioning indicators.
• Decision density.
• Number of delocal iz ing statements.

RPG Metrics that indicate comprehensibil ity of Data Flow

• Halstead volume – basical ly a measure of the number of dist inct f ields and their
uses

• Number of database f i les
• Number of device f i les
• Number of EXFMTs/ READs to display f i les
• Number of d isplay f i le formats with f ie lds that output to a database f i le
• Number of sub-f i les in program
• Number of cal led programs

11

Complexity Metrics & Difference Analysis for better Application Management

• Number of cal l ing programs
• Number of f ields whose value was set
• Number of f ields whose value was used
• Number of g lobal f ie lds whose value was set
• Number of g lobal f ie lds whose value was used
• Number of f i les updated
• Number of program-described input f i les
• Number of program-described output f i les
• Number of appl icable OVRDBFs
• Number of appl icable OPNQRYF statements
• Average variable span by l ine numbers
• Total var iable span by l ine numbers
• Average variable span by subroutine count
• Total var iable span by subroutine count
• Number of delocal iz ing statements

RPG Metrics that indicate comprehensibil ity through Knowledge Mappability

• Number of non-hyper- local f ield names of less than x characters
• Number of l ines of comments

RPG Metrics that indicate comprehensibil ity through Chunkability

• Number of actual l ines of code
• Number of actual l ines of comments
• Greatest number of statements in a subroutine
• Greatest number of statements in an IF/DO block
• Number of impl ic i t g lobal parameters in a procedure
• Number of delocal iz ing statements
• Maintainabi l i ty index – a formula developed by HP through experience
• Number of /COPY members
• Number of statements changed/added in the last 30-60-90-180-360 days
• Number of months in the last 12 months that had one or more statements

added/changed

Some of these metr ics are useful in more than one category and some do not f i t
neat ly into these categories or are not perfect indicators, but nevertheless, i t
should be clear that there are in fact a number of useful metr ics for understanding
maintainabi l i ty and overal l program complexity.

I t should also be clear that these metr ics can in fact be computed from typical
source code, and in fact, that is precisely what Databorough’s X-Audit tool del ivers.

I f you are an experienced programmer who is managing a large appl icat ion, you
may look at this l is t and nod your head in recognit ion that many of these things
would be interest ing to have in a sortable l is t .

But the real quest ion is, how can these metrics make a meaningful difference?

12

Complexity Metrics & Difference Analysis for better Application Management

How Measurable Items Become Actionable

“What gets measured is what gets done.”

 - Tom Peters

The fol lowing diagram shows the two pr imary ways in which software metr ics can
help manage a software maintenance operat ion.

The lef t box is meant to show that metr ics information can be used to br ing better
management and planning to your software projects. Some of the ways this
informat ion can be used are:

• Adjust programming est imates, and therefore schedules and costs
• Decide where more thorough analysis is necessary
• Decide which resources are most appropr iate for a task
• Develop more appropr iate and detai led test ing plans.
• Advise the business of addit ional project r isks
• Decide on alternat ive design plans to minimize changes to highly complex code

For more informat ion on how to use metr ics for these purposes see the use case
Improving Project Management Through Better Information.

The r ight box is meant to show that metr ics information can be used help you keep
your software in a more maintainable state and thus preserve i ts long term value
and abi l i ty to respond to business needs quickly and cost-effect ively.

13

Complexity Metrics & Difference Analysis for better Application Management

This type of work can be analyzed in a couple ways, leading to tasks that:

• Refactor programs that cross a certain threshold of complexity, or,
• Refactor programs that have shown a large increase in complexity and are

expected to cont inue to do so

For more informat ion on maintaining maintainabi l i ty see the fol lowing use cases:

• Monitor ing changes in program complexity to preserve system value and extend
i ts useful l i fe

• Target ing the top 1% of code that makes your job diff icult
• Finding programs most l ikely to produce defects when modif ied
• Identi fying unseen r isks in your appl icat ion
• Cleaning up your system so i t wi l l recompile in i ts ent irety

Uses of Historical and Time Series Information

The metr ics discussed so far have been point in t ime metr ics, in that they analyze
source code and system objects at the t ime the metr ics data is generated. For
overal l system management there are other useful perspect ives that involve the
dimension of t ime and change.

One important perspect ive comes from understanding the change in the complexity
and maintainabi l i ty of your system over t ime :

In this case metr ics data col lected at two or more different points in t ime are
compared and the di fferences are shown.

Some of the purposes of this sort of analys is are:

• Determine the overal l success of maintaining maintainabi l i ty

14

Complexity Metrics & Difference Analysis for better Application Management

• Identi fy programs that cross a def ined threshold of maintainabi l i ty into
unmaintainabi l i ty and are thus candidates for Refactor ing

• Identi fy programs with sudden changes in complexity and that are forecast to
cont inue with that trend, and are thus candidates for Refactor ing or other
at tempts to keep maintainable

• Identi fy increases in complexity where they were not expected, as a possible
indicat ion of poor programming or design

See the use case Analyzing Metr ics Time Series Data for Changes in System
Complexity for more information.

Version Comparison

Version compar ison is a faci l i ty that enables you to compare two different versions
of your appl icat ion at both the source code and object levels. Here are a few
common scenarios where th is is useful :

• Compare a version of the appl icat ion in use in one locat ion to the version in use
at another locat ion

• Compare a new version of a packaged product release to the version current ly
instal led in order to understand the differences

• Compare the current state of the appl icat ion to the state i t was in at a point in
t ime in the past

Difference Analysis

A product such as Databorough’s X-Audit can do these compar isons and give
detai led reports on both source and object d ifferences between the versions.

This informat ion can point to changes that have to be made to br ing two versions
into harmony, or to integrate a new version of the source. By comparing versions
from different points in t ime the analys is can reveal unexpected changes in the
system in the inter im.

Information contained in such an analysis includes:

• Files and programs that have been added, changed or deleted
• Fields whose attr ibutes have changed
• Changes in database relat ionships and dependencies
• Business rules that have been changed, added or deleted
• Source statements that have been changed, added or deleted

15

Complexity Metrics & Difference Analysis for better Application Management

Source Comparison

The last type of analysis in the above l ist can become very involved as potent ial ly
many source members may have been changed. I t is important that a faci l i ty be
avai lable to quickly dr i l l down from a changed source member to the specif ic l ines
of code that have been changed, added or deleted.

A source comparison tool is essential for analyzing the differences in source code
between the versions being compared. A good tool should show you:

• Which source members have been changed and al low you to dr i l l down into:
• Which source statements have been changed, added or deleted

Here is an example of a source compar ison; in this case two H specif icat ion
statements exist in the left hand version which do not exist in the r ight hand
version:

PTF Analysis – A Special Case of Version Comparison

I f you are using a packaged software appl icat ion that you have customized to meet
your needs then you wil l probably have encountered the chal lenges that come
when the vendor provides a new release of the product. How do you integrate your
past changes with the new version of the software? What have you changed? What
have they changed?

This is in fact a serious chal lenge and potent ial ly a great deal of analysis work.
The fol lowing diagram depicts this s i tuat ion.

16

Complexity Metrics & Difference Analysis for better Application Management

In this case an analysis of the source and objects in the new release of a packaged
software product (bot tom) are compared against the source and objects that have
been customized in the past (middle) and the current base instal lat ion of the
package (top).

This sort of analysis can be quite labor intensive but the use of a tool l ike
Databorough’s X-Audi t PTF Analysis can save a great deal of t ime and prevent the
r isk of mistakes.

The fol lowing types of condit ions are analyzed and reported on. In these examples
“PTF l ibrary” refers to the new release of package changes and “customized”
l ibrary refers to the customizat ions that have been made over t ime to the base
package.

Modified - The object from the PTF l ibrary was found in one of the customized
l ibrar ies. The PTF object wi l l have to be reviewed and changes appl ied in the
customized l ibrary must be manually appl ied to the object in the PTF l ibrary.

New - The object from the PTF l ibrary was not found in the base repository. The
PTF object can be placed in the base l ibrary.

Apply - The object from the PTF l ibrary was found in one of the base l ibrar ies but
not in any of the customized l ibrar ies. Therefore the PTF object can over lay the
object in the base l ibrary.

Refers - The object from the PTF l ibrary refers to one or more objects in one of the
customized l ibrar ies. The PTF object wi l l have to be analyzed to make sure al l
customized objects referred to st i l l meet the requirements of this object.

Referenced - The object from the PTF l ibrary is referenced by an object in one of
the customized l ibrar ies. The customized objects wi l l have to be reviewed to make
sure the PTF object wi l l st i l l interface properly to the customized objects.

17

Complexity Metrics & Difference Analysis for better Application Management

Testability

Testabi l i ty is one of the character ist ics of Maintainabi l i ty, which, again, is one of
the ISO character ist ics of software qual i ty.

Testability and Metrics

Most metr ics that pertain to complexity and maintainabi l i ty, also pertain to
testabi l i ty. I f a program is more complex, and more diff icult to maintain, i t tends to
be more diff icult to test. With perhaps a few except ions, pretty much al l of the
metr ics in the sect ion Overview: Translat ing Quali ty into Measurable I tems impact a
program’s testabi l i ty.

Improving Testability With Tools

Reducing code complexity can br ing some rel ief in terms in testabi l i ty, but more
l ikely to make a more dramatic and immediate impact on testabi l i ty is the use of
tools.

Managing Code Complexity for Testabil ity – Control Flow

The completeness of test plans is often measured in terms of coverage. There are
several levels or dimensions of coverage to consider:

Funct ion, or subroutine coverage – measures whether every funct ion or subroutine
has been tested

Code, or statement coverage – measures whether every l ine of code has been
tested

Branch coverage – measures whether every case for a condit ion has been tested,
i .e., tested for both true and false

Loop coverage – measures whether every case of loop processing has been tested,
i .e. zero i terat ions, one i terat ion, many i terat ions

Path coverage – measures whether every possible combination of branch coverage
has been tested. Large programs can have huge numbers of paths through them. A
program with a mere 20 IF, DO or WHEN statements can have over one mi l l ion
different paths through i t (paths = 2 n) .

Removing redundant condit ions, and organizing necessary condi t ions in the
simplest possible way help to minimize control f low complexity and thus minimize
both the probabi l i ty of defects and the required test ing effort .

Managing Code Complexity for Testabil ity – Data Flow

Also of concern for managing testabi l i ty is the impact of code implementat ion on
the complexity of data f low. This type of complexity can be measured in a few

18

Complexity Metrics & Difference Analysis for better Application Management

different ways:

Depth of transformation – A variable that is moved from an input f i le direct ly to an
output f i le is said to a transformation degree of 1. I f i t is f i rst mult ip l ied by 10, for
example, the degree is then 2. The more that data is transformed the more complex
the test plans must be.

Dispersion, or span of modif icat ion – I f the statements that modify a given variable
are scattered around a program it wi l l both be more l ikely to have defects and more
l ikely to require more test ing. I f a given variable is set three t imes in the span of
ten consecut ive statements that is much less l ikely to produce defects or test ing
chal lenges than i f the variable is modif ied three t imes each in different subrout ines
separated by 1,000 l ines of code.

By considering these data f low complexity factors when designing the program
code the ult imate testabi l i ty and qual i ty of the program can be increased.

Using Tools To Improve Testability

Tools can be of great assistance in the test ing effort , br inging gains in both
product iv i ty and qual i ty. Examples of tools are:

Complexity metr ics – as th is paper discusses, understanding the complexity
metr ics of a program to be tested helps in prepar ing both project plans and test ing
plans. See the use cases Improving Project Management Through Better
Information and Finding Programs Most Likely To Produce Defects When Modif ied
for more informat ion .

Generat ion and Val idat ion of Test Plans – see the sect ion immediately below for
more information on this.

Tracking code and branch coverage – tools can be of great assistance in tracking
whether al l statements and condit ions in a program have been tested.

Generation and Validation of Test Plans

A common method of developing a test plan is to fol low a hierarchy as fol lows:

– Business Processes
– Test Cases

– Test Scenarios

In System I appl icat ions a given interact ive program might typical ly be thought of at
the test case level and have any number of indiv idual test scenar ios.

A very useful approach to developing the test case and test scenar ios is to
translate the program into a UML Activ i ty Diagram. This kind of diagram shows al l
the different use paths a user can fol low in execut ing the program and provides an
excel lent foundat ion for the test scenar ios. (note that these paths are not exact ly
the same thing as the code paths described above, though they are obviously
related).

19

Complexity Metrics & Difference Analysis for better Application Management

Shown below is an example of a port ion of an act iv i ty diagram as produced by
X-Analysis which can be used to improve test ing product iv i ty and qual i ty.

In the above diagram from Databorough’s X-Analysis UML feature, each connector
would typical ly be designated as a test scenar io, with condit ions, data, act ions and
resul ts def ined for that funct ion.

20

Complexity Metrics & Difference Analysis for better Application Management

U s e Cases for Metrics Reporting and Difference Analysis

Find the Most Complex Code in My System

Why it ’s important and valuable

There are three categor ies of reasons for why this is valuable informat ion:

1. Project planning – With complexity metr ics you can make more f ine-grained
judgments about the strategy and planning of your projects. See the use case
about improving project management for detai led informat ion.

2. Proact ive complexity mit igat ion – IT managers with a long term view of their
system’s health take proact ive measures to prevent their code from becoming
excessively complex. See the use case about extending the l i fe and value of
your system for more information on this perspect ive.

3. Design recovery and migrat ion – I f you are extract ing business rules or
migrat ing your code to another language you may want to plan on manual,
correct ive act iv i ty to deal with overly complex code.

What information is needed and why

In this use case example we wi l l use ei ther or both of the basic complexi ty reports
that are pre-conf igured in X-Audit :

1. COMPLEXP – metr ics by program, or
2. COMPLEXS – metr ics by subroutine

Both of these reports have the same data except that the latter also has subroutine
names, giv ing more detai led results. Otherwise, both of these contain the same
metr ics:

• Number of actual l ines of code
• Greatest number of source records in a subroutine
• Greatest number of statements in an IF/DO block
• Cyclomatic complexi ty
• Halstead volume
• Maintainabi l i ty index
• Number of v ir tual ly global var iables
• Total or average variable span by l ine number or subroutine
• Decision density
• Number of database f i les

21

15

Complexity Metrics & Difference Analysis for better Application Management

• Number of cal led programs
• Greatest depth of nested IF/ DOs
• Greatest depth of nested ELSEs
• Number of GOTOs or CABxxs
• Greatest depth of loops wi thin loops
• Decision density

These reports both select al l objects wi th an attr ibute of RPG or RPGLE.

A l i t t le bigger picture: X-Audit provides a number of metr ics for evaluat ing
complexity. There are three ways to th ink about measuring the complexity of your
code:

1. Using tradit ional , cross-language metr ics, such as Cyclomatic Complexity,
Halstead Volume and Maintainabi l i ty Index.

2. Using addit ional metr ics provided by X-Audit that are more language and
System i specif ic.

3. Using your own custom metr ics:
A) Computed by you using the provided X-Audit formula, which enables

you to combine ei ther of the above metr ics.
B) Writ ing your own code analysis programs and creat ing your own

appl icat ion-specif ic metr ics using the X-Audit user exit program
faci l i ty.

Evolving the Most Representative Metrics

Eventual ly you wil l want to decide on which metr ics best represent complexity in
your appl icat ion. These might be one or more of the pre-packaged metr ics or some
combination of them that you perform your own customized computat ions on.

How to generate the report

Select either of the above reports and cl ick on Run Metr ics Report on the main
X-Audit screen.

I f you want to modify either of these reports you can make a copy of i t and change
any of the parameters.

Analyzing the Results

The f irst t ime you see the results of this report you wil l real ize how much
measurable information you’ve been missing. You wil l want to play wi th the data in
a number of ways to develop a model of which metr ics give you the best indicat ion
of your own system’s complexity. Here is an example of a screen-shot for a shorter
version of the above reports:

22

Complexity Metrics & Difference Analysis for better Application Management

In this example al l the metr ics except Lines Of Code have been normal ized to a
scale of 1-100. Doing this helps read the results and also faci l i tates combining
indiv idual metr ics into combined, weighted scores.

Also in this example note that the f irst metr ic, “Base-Complex”, is a custom, user-
def ined metr ic that is comprised of several other metr ics that the user has decided
most accurately convey complexity in this part icular appl icat ion.

Note that this is sorted by Base-Complex, and note how Lines Of Code does not
correlate well to complexi ty. This has been shown by many studies over the years –
Lines of Code is a poor indicator of complexi ty.

Reducing Size of Application and Maintenance Workload by Removing unnecessary Code

Why it ’s important and valuable

Many systems accumulate dead objects or dead code wi th l i t t le apparent harm. The
key word there is “apparent” . Many IT organizat ions waste an unknown number of
hours maintaining, recompil ing and test ing objects that are no longer actual ly in
use. Over a period of years the number of these objects tends to pi le up, as does
the amount of wasted effor t .

What information is needed and why

In this use case example we wi l l use ei ther or both of the unused object reports
that are pre-conf igured in X-Audit :

1. UNUSEDOBJ – unused objects, based on object descript ion last used date
2. UNUSEDCOD – unused sect ions of code e.g., subroutines or procedures not

cal led

23

Complexity Metrics & Difference Analysis for better Application Management

How to generate the report

Select either of the above reports and cl ick on Run Metr ics Report on the main X-
Audit screen.

I f you want to modify either of these reports you can make a copy of i t and change
any of the parameters. (See sect ion How the Product Works for more information
on the screen opt ions avai lable to you)

Analyzing the Results

The two reports work very di fferent ly and lead to different tasks you wi l l want to
undertake to reduce your maintenance workload.

UNUSEDOBJ – this report looks at the last used date from System i object
descript ion data. Be sure you understand exact ly how the last used date is set and
reset on the System i for objects before archiv ing them.

UNUSEDCOD – this report l is ts subroutines and procedures that have zero cal ls to
them within their program. These represent sect ions of code that can be deleted.
Be sure you fol low good source management procedures, including archiv ing,
before delet ing code.

Improving Project Management through Better Information

Why it ’s important and valuable

With complexity metr ics you can make more f ine-grained judgments about the
strategy and planning of your projects. Complexi ty information can help you:

a) Adjust programming est imates, and therefore schedules and costs
b) Decide where more thorough analysis is necessary
c) Decide which resources are most appropriate for a task
d) Develop more appropriate and detai led test ing plans
e) Advise the business of addit ional project r isks
f) Decide on alternat ive design plans to minimize changes to highly complex code

What informat ion is needed and why

This use case ut i l izes your evolved complexity metr ics – the ones that best
represent complexity in your system.

How to Apply Metrics to Project Management

Improving Est imates

24

Complexity Metrics & Difference Analysis for better Application Management

Research studies have shown that presenting informat ion to programmers about
the program they wil l be working on materia l ly affects their est imates of the work to
be done. By supplying some facts to supplement their intui t ion and experienced
based judgment, you can obtain more real ist ic est imates of the amount of effort
involved. Examples of what can improve the qual i ty est imates include:

• Number of cal ls to a subroutine to be changed
• Number of cal ls made to a subroutine
• Number of uses in a program of a variable to be changed
• Number of uses in a program of a f i le to be changed
• Cyclomatic complexi ty or other IF/DO metr ics of code to be changed
• Number of f i les, input formats and/or subfi les in a program
• Number of statements in relevant programs, subroutines, or large IF/DO blocks

to be changed

Decide Where More Thorough Analysis is Necessary

By understanding the complexity structure of a given program requir ing
modi f icat ion, a manager can be sure a programmer has del ivered a qual i ty est imate
by understanding what subroutines require changes and then comparing the
programming est imates against the complexity metr ics for those subrout ines.

I f the values of certain variables in the program wi l l be affected then the manager
can also examine how many uses of the variables exist in the program, thus
understanding the potent ial impact of the changes, and the amount of impact
analys is required to do a qual i ty job.

For example, there is a large difference in the amount of analys is work required
between adding a few l ines of code to a s imple sect ion of the mainl ine that does
not affect var iables, and adding a few l ines of code located in the middle of deeply
nested IF/DO/ELSE blocks in a subroutine cal led from many places in the program,
where those changes affect var iables widely used throughout the program.

Without doing the code research i tself , a managers have had few options for
evaluat ing the est imates provided by programmers. By simply asking programmers
which subroutines they wi l l be modifying the manager can now evaluate the
complexity metr ics of those code sect ions and make a more informed judgment of
whether the programmer ’s est imate is suff ic ient ly considered.

Decide Which Resources Are Most Suitable For a Task

For a given project, once the l is t of programs to be modif ied has been compiled,
the IT manager can look at the metr ics for the programs and decide which ones
require the use of resources with ei ther special program knowledge or the abi l i ty to
handle highly complex programs. While most IT managers know this to some
degree from experience, the avai labi l i ty of metr ics presents the basis for a more
quanti f iable and consistent decis ion process.

25

Complexity Metrics & Difference Analysis for better Application Management

Develop More Detai led and Appropriate Test ing Plans

By understanding which subrout ines are to be modif ied, and what their complexity
metr ics are, the project plan can be adjusted to account for addit ional test ing for
more complex sect ions of code being changed. Useful metr ics include al l of the
Cyclomat ic and IF/DO complexi ty metr ics, as well metr ics relat ing to numbers of
f i les and f ields involved.

Advise the business of addit ional project r isks

Complexity metr ics represent tangible informat ion that IT can present to the
business when explaining the chal lenges of part icular projects. The metr ics can be
used to explain why some tasks require more t ime than others, and why some tasks
are more l ikely to result in product ion defects.

By making complexity metr ics a regular part of project plans presented to business
stakeholders, IT can shape the overal l process to be based more on facts rather
than intuit ion and persuasion.

Decide on alternat ive design plans to minimize changes to highly complex code

For a given project, once the l is t of programs to be modif ied has been compiled,
the IT manager can look at the metr ics for the programs being changed and decide
to invest igate alternat ive design plans that might c ircumvent the most complex
sect ions of code being changed. Obviously, a l l projects have more chance of
success i f they deal wi th the simplest possible code.

Cleaning Up your System to Recompile in its Entirety

Why it ’s important and valuable

Why this is important almost goes without saying, but i t often becomes one of
those things that is important but not urgent. What can make i t more urgent is i f
you plan on doing something l ike any of the fol lowing:

• Instal l a new release of packaged software
• Re-engineer or migrate your system
• Execute a large appl icat ion enhancement project

What information is needed and why

There are a number of “alert” type metr ics provided wi th X-Audit that are useful for
th is purpose. Some of them direct ly indicate i t is impossible to compile your system
accurately, others indicate general ly undesirable condi t ions that are worth
invest igat ing.

26

Complexity Metrics & Difference Analysis for better Application Management

• No source for exist ing object
• Source was changed af ter object was created
• No object for exist ing source
• Logical f i le is dupl icate of another
• Logical f i le is not used in any programs
• Fi le has no members
• Fi le is internal ly described
• Fi le format level used in program does not match database f i le
• Program has hard coded l ibrar ies

How to generate the report

This is a pre-configured report provided with X-Audit – see the category,
Source/Object Reports .

Targeting Top 1% of Code that makes your JOB Difficult

Why it ’s important and valuable

Numerous software studies have shown that the major i ty of defects come from a
small percentage of programs, the major i ty of complexity in a system is contained
in a small percentage of programs, maintenance tasks tend to revolve around a
small percentage of programs, and so on. The Pareto Principle, aka, the 80-20
rule, doesn’t apply, i t ’s more l ike the 90-10 rule, or the 95-5 rule, or, l ike the t i t le
suggests, even the 99-1 rule.

Here’s a formula worth considering:

(most complex code) U (most frequently changed code) -> (most troublesome,
costly code)

In other words, the intersect ion of your most complex code and your most volat i le
code deserves some serious at tent ion!

What is i t that makes code both complex and volat i le?

• Defect repair leads to changes
• Hard coding leads to changes
• Inadequate design vs. business or technical needs leads to changes
• Changes lead to ever increasing complexity
• Complexity leads to defects

And so on. Yes, there can be a vic ious cycle at work.

27

20

Complexity Metrics & Difference Analysis for better Application Management

I f you can identi fy your most complex, volat i le code what can you do about i t?

• Remove hard coding.
• Revisit other design aspects and see i f i t needs to be upgraded.
• Have managed code walk through to inspect i t for defects – various studies

have put the cost of user-discovered defects at 10-100 t imes higher than
developer discovered defects

• Refactor the sect ion of code to s impl i fy i t ; possibly break i t into smaller, more
manageable and more testable pieces.

What information is needed and why

The f irst use case, How Can I Find the Most Complex Code In My System showed
you how to do just that. What is needed for th is use case is to combine that
informat ion with information about what source code is changed and how
frequent ly.

How to generate the report

Depending on what you have done regarding def ining which metr ics you want to
use for complexi ty analysis, you may be able to s imply add the X-Audit metr ic
SRCCHG360 to your metr ics report . Alternat ively you can run the report Source
Change Volat i l i ty under the category Source/Object Reports and export al l results
to spreadsheets where you merge and analyze the complexity and volat i l i ty metr ics
resul ts.

X-Audit source volat i l i ty analysis works by analyzing source change dates in
source f i les. This provides l imited informat ion. X-Audit also provides an interface
for more detai led source change data that can be fed from your change
management system.

Finding Programs most likely to Produce Defects when Modified

Why it ’s important and valuable

Knowing which programs are the most l ikely to produce defects when modif ied can
help you:

• Seek alternat ive design solut ions that avoid those programs
• Adjust your programmer resource plan to place your most rel iable programmers

on those chal lenging programs
• Allow for addit ional t ime and resources in project plans for more extensive

test ing
• Alert business users to increased project r isks

28

Complexity Metrics & Difference Analysis for better Application Management

• Decide to proact ively refactor/redesign your programs

What information is needed and why

Most of the complexi ty metr ics have some bearing on how l ikely i t is that
modi f icat ions wil l lead to defects for a given program, but certain metr ics are
general ly more useful than others, in part icular, those that re late to the di ff icul ty of
impact analysis, or indicate program volat i l i ty:

• Number of v ir tual ly global var iables
• Total or average variable span by l ine number or subroutine
• Decis ion density
• Greatest depth of IF/DO/ELSE blocks, or GOTO count
• Depth of subrout ine cal ls
• Number of cal led programs or external procedures
• Number of statements changed in the last year

How to generate the report

This is a pre-configured report provided with X-Audit . Under the category, RPG
Complexity Reports, select and run the report, Defect-prone programs.

Analyzing the Results

By developing a pract ice of tracking defects and measur ing them against these
defect analysis metr ics, or others that you develop over t ime, you can ref ine your
abi l i ty to predict defect levels and plan accordingly.

Identifying Unseen Risk in your Application

Why it ’s important and valuable

This topic div ides into two categories of r isks:

• Object level r isks, re lated to system object management
• Code level r isks, related to the code of programs

The reason why identi fying r isks is important is self-evident . Quanti fying the
potent ial costs of the r isks is also important, more so for weighing the cost of the
repair effort than for doing the analys is, which is as s imple as running the report
ment ioned below.

29

Complexity Metrics & Difference Analysis for better Application Management

What information is needed and why

There are many potent ial r isk factors in a system, here are a few to consider:

• Programs have non-approved hard coded l ibrar ies
• No source code exists for an object
• The source code has been changed since the object was created
• The same f ield name is found in mult iple f i les in a program
• RPG UPDATE operat ions are done without l is t ing f ields
• RPG WRITE operat ions exist for input/update f i les and no CLEAR operat ion is

found

How to generate the report

This is a pre-configured report provided with X-Audit . Under the category,
Source/Object Reports, select and run the report, Unseen Risks.

Monitoring Changes in Program Complexity to preserve System Value & Extend its life

Why it ’s important and valuable

The second law of software evolut ion states, “as a system evolves, i ts complexity
increases unless steps are taken to reduce i t . ” Or, as someone else said, ” the act
of maintaining software necessari ly degrades i t . ”

Your appl icat ions are an asset of your business. As you maintain them over t ime
you cause the value to depreciate by making them more complex and less
maintainable. Arguably you are also increasing their value by adding funct ional i ty,
but there is no doubt that appl icat ions become more t ime-consuming and cost ly to
maintain as they age.

Some IT organizat ions address th is growing complexity by proact ively maintaining
maintainabi l i ty. After establ ishing a set of metr ics that best represents complexity
for their appl icat ions, they periodical ly measure the complexity of the ent ire
system. Programs that either cross a threshold of complexi ty or show large
increases in complexity are candidates for refactor ing.

What informat ion is needed and why

This process is based on the set of metr ics establ ished in the f irst use case, How
Can I Find the Most Complex Code In My System? Armed with that information,
there are two basic approaches:

• Refactor programs that cross a certain threshold of complexity
• Refactor programs that have shown a large increase in complexity and are

30

Complexity Metrics & Difference Analysis for better Application Management

expected to cont inue to do so

The fol lowing diagram depicts the growth in complexity of a part icular program and
shows that when i t crossed a def ined threshold of complexity i t was Re-factored to
preserve i ts maintainabi l i ty:

I t is useful to store metr ics in order to compare them to future values of the
metr ics. As the chart shows, analyz ing the differences can reveal important
patterns of complexity as i t relates to overal l analyzabi l i ty, changeabil i ty, stabi l i ty
and testabi l i ty.

This informat ion should also be reviewed with information about past program
volat i l i ty and known plans for future projects.

Analyzing Metrics Time Series Data for Changes in System Complexity

Why it ’s important and valuable

There are at least two good examples of the benef i ts avai lable by examining
changes in complexi ty metr ics over a period of t ime:

• Patterns in complexi ty growth and system growth that are obscured in the hurry
of day-to-day work can be seen and future development plans can be adjusted
or created based on the new understandings

• Observed increases in complexity that do not match expectat ions can reveal
poor design or programming pract ices, which in turn may lead to correct ions,
better training or adjustments in future resource assignments

What information is needed and why

Obtaining this t ime series informat ion is s imply a matter of stor ing metr ics at

31

Complexity Metrics & Difference Analysis for better Application Management

different points in t ime, calculat ing the differences and report ing on them. This is
best done when an organizat ion has ident i f ied the specif ic metr ics that give the
best indicat ion of complexity and maintainabi l i ty for the appl icat ion.

Here is an example of a basel ine metr ics report at a given point in t ime. In th is
case a basel ine complexity metr ic has been customized by the user and the report
is sorted top to bottom in that sequence. Also, a l l metr ics scores have been
normalized to a scale of 1-100.

At a later point in t ime we run the analys is again and get a similar set of results,
but the metr ics are now di fferent.

The fol lowing report shows which metr ics have changed and by how much. A
posit ive number indicates the metr ic value has increased.

Time Series Report Showing Changes In Metr ics

In this example the program with the largest increase in the base complexity metr ic
is l is ted f irst , showing an increase of 10. Correspondingly i ts maintainabi l i ty has
dropped by 3 and the number of l ines of code have increased by 403.

In this example what also stands out for the IT manager is that program AT201R

32

Complexity Metrics & Difference Analysis for better Application Management

has had a substant ial increased in base complexity of 9, yet the IT manager knows
that he had only asked for a s imple change to this program – that is worth
invest igat ing.

Analyzing Differences in Source Code and System Objects in different Versions

Why it ’s important and valuable

There are a number of circumstances where i t is useful to compare different
versions of an appl icat ion:

• A software vendor del ivers a new release of the appl icat ion and you need to
know what has changed so you can conf irm your customizat ions or interfaces
wil l work correct ly

• You operate with different versions of the software in different countr ies or for
d ifferent subsidiar ies or div is ions and you need to understand the differences
when planning for a new project

• You need to compare a snapshot of the appl icat ion from the past with the
current version in order to track down system changes that are causing
problems

• A sl ight ly different si tuat ion is when you have a packaged appl icat ion for which
you have made customizat ions and the vendor del ivers a new release and you
need to assess the impact of the new release on your customizat ions.

What information is needed and why

Performing an analys is for any of these circumstances involves comparing a large
set of system and source code information. At a high level you might invest igate
some of these types of information for differences between the versions:

• Commands
• Parameters
• Command processing and val id i ty checking programs cal led

• Database
• Fields
• Keys
• Relat ionships
• Logical f i les over each phys ical f i le
• Constraints
• Triggers
• Select/omit cr i ter ia

• Programs
• Business rules

33

25

Complexity Metrics & Difference Analysis for better Application Management

• Bound modules
• Program references
• Subroutines
• Bound service programs
• Procedures
• SQL queries

• Source code
• Indiv idual statements added, changed or deleted

Obviously this is a lot of informat ion and accompl ishing this task involves these
pr imary capabil i t ies:

• Col lect ing and stor ing this information for two versions
• For the fourth case l isted in the top sect ion you actual ly need to tr iangulate

between three versions of the source and objects: the or iginal base package,
your customizat ions, and the new version of the base package

• Analyz ing the data and report ing on the differences.

 Databaorough’s X-Audit product provides the funct ional i ty to do these kinds of
analys is.

 Steve Kilner
© Databorough

34

	Executive Summary
	Concepts
	The Science Behind Software Maintenance
	Why Audit and Metric Capabilities are Critical for Managing Legacy Applications

	Overview
	Aspects of Quality in Software Maintenance
	Translating Quality Into Measurable Items
	How Measurable Items Become Actionable
	Uses of Historical and Time Series Information
	Version Comparison
	Testability

	Use Cases for Metrics Reporting and Difference Analysis
	Find the Most Complex Code in My System
	Reducing Size of Application and Maintenance Workload by Removing unnecessary Code
	Improving Project Management through Better Information
	Cleaning Up your System to Recompile in its Entirety
	Targeting Top 1% of Code that makes your JOB Difficult
	Finding Programs most likely to Produce Defects when Modified
	Identifying Unseen Risk in your Application
	Monitoring Changes in Program Complexity to preserve System Value & Extend its life
	Analyzing Metrics Time Series Data for Changes in System Complexity
	Analyzing Differences in Source Code and System Objects in different Versions

