
 Databorough

Analysis and Documentation
with X-Analysis

» Analyze Application Graphically

» Automatic System Documentation

Richard Downey
Stuart Milligan

WHITE PAPER

P r e f a c e

D e v e l o p i n g t o o l s s e r v i c e s f o r a n a l y z i n g a n d r e - e n g i n e e r i n g R P G
a p p l i c a t i o n s f o r t h e l a s t 2 0 y e a r s , h a s g i v e n D a t a b o r o u g h a
u n i q u e v i e w o f t h e v e r y l a r g e a n d c o m p l e x w o r l d o f l e g a c y
a p p l i c a t i o n s r u n n i n g o n S y s t e m i , i S e r i e s a n d A S / 4 0 0 . I n 2 0 0 5 ,
I B M a n d D a t a b o r o u g h p u b l i s h e d a n I B M R e d b o o k “ M o d e r n i z i n g
a n d I m p r o v i n g t h e M a i n t a i n a b i l i t y o f R P G A p p l i c a t i o n s U s i n g X -
A n a l y s i s Ve r s i o n 5 . 6 ” . T h i s p a p e r e x p a n d s o n t h e r e c e n t l y
r e l e a s e d w h i t e p a p e r ' M o d e r n i z i n g R P G / C O B O L S y s t e m i
a p p l i c a t i o n s u s i n g X - A n a l y s i s 8 ' i n c o r p o r a t i n g n e w c o n c e p t s a n d
m e t h o d s f o r a p p l i c a t i o n a n a l y s i s a n d d o c u m e n t a t i o n o f a R P G
a p p l i c a t i o n s . C o n t a c t i n f o @ d a t a b o r o u g h . c o m f o r a c o p y o f t h e
w h i t e p a p e r , t h e R e d b o o k a n d t r i a l s o f t w a r e .

mailto:info@databorough.com

Table of Contents
Executive Summary...1
Introduction..2
Why Design Recovery is difficult..3
Analysis, Documentation & Application Subdivision...5

Understanding Design & Function More Easily...5
Producing Static Documentation Automatically...9

Summary..12

Analysis & Documentation with X-Analysis

E x e c u t i v e S u m m a r y

The knowledge and information contained in an organizat ion's business software is
v i tal ly important and very valuable but often this informat ion covering the
operat ion, metr ics, and design of the software is tantal iz ingly out of reach. Without
this knowledge, maintenance and changes to the system are not as eff ic ient or
effect ive as they could be, and the r isk of fai lure or problems increases
exponent ia l ly the larger the enhancement required. This could lead to a paralysis
where changes can't be made due to a lack of conf idence in the outcome.

Accurate and current information about an ent ire system can great ly improve the
product iv i ty of your IT staff , and reduce maintenance costs by el iminat ing the need
to research, catalog and assemble the information manually for each service
request, or modernizat ion project.

Exist ing System i 1 appl icat ions have some fair ly consistent and dist inct
character ist ics that mark them as cost ly and potent ial ly high-r isk:

1. Appl icat ions tend to be large and complex
2. Lit t le or no documentat ion
3. Original Designers no longer avai lable
4. They have been developed over many years
5. Monol i th ic Programming Model
6. Writ ten in obsolete languages

Points 1 through 3 can largely be managed more effect ively by invest ing in a
product l ike X-Analysis to both recover the design of the appl icat ion, and provide
highly product ive analys is tool ing to compensate for the complexity of the
appl icat ion.

Inconsistent programming standards and designs, signif icant amounts of redundant
and dupl icated code, and an increasingly cost ly demand for global ly diminishing
legacy development ski l ls , are the results of points 4, 5 and 6.

This paper wi l l i l lustrate how the X-Analysis carr ies out analysis and automatic
documentat ion which del ivers deep insights of your systems.

1 Note - fo r cons is tency th roughout th i s document we use Sys tem i to re fer to the fami l y o f computers
tha t g rew out o f IBM’s Sys tem/38 over the las t twen ty years namely the AS/400 , iSer ies and la t te r l y the
Sys tem i and IBM i on Power. We have p icked Sys tem i as i t i s the cur ren t name used by IBM though
mos t readers (and t he au thor) w i l l l i ke l y use t he ear l i e r t e rms.

1

Analysis & Documentation with X-Analysis

I n t r o d u c t i o n

As we have seen gathering knowledge about System i appl icat ions is not a
straightforward task for today's generat ion of business analysts and developers. To
i l lustrate that point and to ful ly understand the problem domain we wi l l look at Why
Design Recovery is diff icult 2 by working through the problems that X-Analysis
solves in bui lding i ts repository of design recovery information.

In s i tuat ions where developers are not famil iar wi th a system or i ts documentat ion
is inadequate, the system's source code becomes the only rel iable source of
information. Unfortunately, source code has much more detai l than is needed just
to understand the system, also i t disperses or obscures high-level constructs that
would ease the system's understanding. X-Analysis aids system understanding by
identi fying recurr ing program features, c lassifying the system modules based on
their purpose and usage patterns, and analyzing dependencies across the modules.

This analys is provides detai led design information about the ent ire system,
accessible to non RPG/COBOL experts, and be easi ly updated to incorporate
ongoing changes in the base system.

Whatever the business needs dr iv ing companies to modernize their appl icat ions,
most want to ensure that the business logic and funct ional design are preserved to
varying degrees as these are core assets.

Design Recovery of an appl icat ion can be broken down into a few logical steps or
stages that represent a gener ic adaptable approach to any appl icat ion
modernizat ion project:

Analysis, Documentation, Application Subdivision – This type of analysis
represents the most common use of the X-Analysis tool across the world. On top of
very powerful cross-referencing funct ional i ty, graphical, narrat ives or a combination
of both, are used to abstract and describe the system in a s imple and intuit ive way,
even for non-RPG/COBOL experts. The legacy appl icat ion can be completely
documented using modern diagramming standards such as UML, Enti ty
Relat ionship Diagrams, System Flow Diagrams, and Structure Charts etc.
Furthermore, the legacy system can be automat ical ly subdivided into appl icat ion
areas so that effect ive system overview & interface diagrams can be generated.
The complete appl icat ion documentat ion can then be output to a variety of third
party design tools such as Rational, MS Visio, MS Word, etc. – indeed any tool
capable of import ing XML or DDL is supported.

2 I f your co l l eagues or t he pro jec t sponsors don ’ t apprec ia te the d i f f i cu l t y o f modern i za t ion get them to
read th i s sec t ion .

2

5

Analysis & Documentation with X-Analysis

Recovering an Application design – [This is beyond the scope of th is document
so we won’t go into detai l here.] This advanced level of analysis extracts model
information from the exist ing appl icat ion. X-Analys is uses i ts own analysis
repository, p lus pattern searching algori thms, to derive relat ional data models,
extract business rules, bui ld UML Activ i ty/Use/Case Diagrams, and logical screen
f lows. Only relevant designs need be used as a base specif icat ion for new
developers to rewr ite the appl icat ion. The structured, repository-based format of
these extracted designs, make i t possible, to programmat ical ly reuse them for
rebui lding the core of a new appl icat ion. This can be done with purpose-bui l t tools,
wi th X-Modernize or a combination of both.

Redeveloping Using a Recovered Application Design – [This is beyond the
scope of this document so we won’t go into detai l here, i f you require more
information please contact Databorough for the modernizat ion white paper.] This
star ts wi th database modernizat ion using the recovered data model. The designs
for the view, control ler, and business rule logic are also extracted and reused in
modern frameworks such as Hibernate, and with new JSF/Facelets and Java bean
components. This opt ion makes i t possible to programmatical ly re-factor the
exist ing appl icat ion into modern, consumable assets and art i facts for developers to
use for a system rebui ld. The object ive is to produce clean, wel l structured,
industry standard code rather than messy syntax conversions with un-maintainable
code.

W h y D e s i g n R e c o v e r y i s d i f f i c u l t

From the point of v iew of the user of X-Analysis this process of bui lding the cross-
reference repository and deriv ing the models happens automatical ly! I t 's just there
and happens typical ly as part of the instal lat ion process - though i t can be
tr iggered again later on i f required. However i t is worth taking some t ime to
understand this process and to see what happens, how the model is constructed
and the relat ionships inferred.

I f you think for a minute of a typical System i appl icat ion i t is l ikely to consist of a
mix of RPG programs, DDS f i les and members for display f i les, database f i les and
logical v iews, newer systems may have these interspersed wi th SQL scr ipts but the
sum of knowledge in that system, how it works and interacts amongst i ts var ious
elements is contained wi thin those source f i les and compiled objects - the issue is
retr ieving that knowledge eff ic ient ly.

To understand and ful ly appreciate the problems X-Analysis solves just consider
the process you would have to undertake yourself i f you wanted to discover how a
system operates or make changes to i t . As a s imple example for part of your
appl icat ion you have a customer detai ls screen with no dedicated place for an
email address and mobi le phone numbers, the system has adapted i tself to the
internet age as many System i apps have done by making use of .extra. and .notes.
ad-hoc f ields. The system has coped but i t has been t ime consuming to retr ieve
these detai ls when required for market ing purposes. But there is now a budget to
correct this and start to look at moderniz ing the appl icat ion and making the
funct ional i ty avai lable to more areas of the business.

3

Analysis & Documentation with X-Analysis

You would probably f i rst start by looking at the program and display f i les that
handle the display and maintenance of the customer information, from that you
would discover the database tables/f i les involved.

At th is point from a simplist ic point of v iew you have the necessary information to
make the changes and they are probably not that diff icult - add new f ields for email
and mobi le phone to the database tables or rename the exist ing ones then modify
the program and display f i les accordingly¡¦ but you're probably thinking what about
the rest of the system? What else uses that table? Is the display f i le used
anywhere else? So the change has more aspects than would f irst appear these are
just a few of the quest ions we have to answer:

• Scope and impact of the change - how many programs and tables are effected?

• Database changes - do we add new f ields or just rename the f ields and preserve
the status quo? Do we know those f ie lds were only used for emai l and mobile
phone data?

• Database integrity - Fie lds dest ined for ad-hoc data l ike 'extra information' and
'notes' are unl ikely to have any val idat ion or to be even required so i f migrat ing
the exist ing values to new f ie lds we can't s imply copy i t over some cleansing wi l l
be required.

The process of gaining the knowledge to answer these quest ions may not be al l
that straightforward, part icular ly i f the systems are complex or the people trying to
answer them are new to the appl icat ion, system or platform.

To assess the scope and impact of the change you need to f ind out which programs
use the f i les/tables affected , this can be very laborious :

✔ Go through al l source f i les in PDM,
✔ opt ion 25 to searching
✔ then F13 to repeat
✔ press enter ,
✔ type in your search term
✔ review results . . .

. . .and that 's just the f irst enquiry! Depending on the complexity and history of your
systems you may have doubts that you were looking at al l of the source or the
latest version.

Looking into Database integr i ty may well throw up i tems l ike the screen shot below:

4

Analysis & Documentation with X-Analysis

We have a number of different formats of email address and some extraneous text ,
s imilar ly on the phone number l is t there is text and a variety of layouts. Final ly we
have the inevitable result of using ad-hoc f ields with no val idat ion or on screen
guidance - transposed data mobile in email and vice-versa.

Hopeful ly this sect ion raised awareness of the problems around changing and
moderniz ing System i appl icat ions, the issues wi th f inding out the necessary
information and how seemingly straightforward issues can be t ime consuming and
problemat ic. X-Analys is is designed and opt imized to make the design recovery
process as straightforward as possible as the rest of this concepts guide wi l l
i l lustrate.

A n a l y s i s , D o c u m e n t a t i o n & A p p l i c a t i o n S u b d i v i s i o n

X-Analys is bui lds a very detai led repository over an ent ire appl icat ion. The
repository maintains al l information about appl icat ion objects, their relat ionships
and al l necessary information to obtain detai led information from each object
across the ent ire system. 20 years of ongoing development, over thousands of
AS/400/iSeries/System-i appl icat ions wr it ten in al l var iants of RPGII/400/IV,
COBOL, and CL, has produced an unmatched capabi l i ty to extract everything about
an appl icat ion from object r ight down to indiv idual var iables. The repository is bui l t
automatical ly using a s ingle command, and in i t ial ly col lects al l object related
information, but then parses every source member in the specif ied system and
every source l ine mapping the contextual information of each variable in the
system. A certain amount of logical abstract ion processing then takes place while
bui ld ing the repository to account for some of the idiosyncrasies typical in an RPG
appl icat ion. This includes constructs such as variable program cal ls, f i le overr ides,
pref ixing and renaming in RPG. The repository thus represents a map of how the
ent ire appl icat ion funct ions r ight down to indiv idual var iables.

Understanding Design & Function More Easily

For eff ic ient famil iar izat ion of an appl icat ion's structure and general funct ion, an
abstract ion above the source code combined with object- to-object re lat ional

5

Analysis & Documentation with X-Analysis

information is required. A few simple but r ich types of color-coded, graphical
diagrams can reveal the data f low and archi tecture of indiv idual objects or parts of
an ent ire system. This is combined wi th automat ical ly der ived descript ions in the
form of Pseudo narrat ives either in the diagrams or whi le browsing source code.
The dr i l l -down, go-anywhere-from-anywhere, interact ive nature of these interfaces
in the X-Analysis c l ient provides a unique approach to information assimi lat ion,
al lowing an analyst to gather information at high level or very detai led in an
eff ic ient and intuit ive manner. The appl icat ion abstract ion is raised one level above
implementat ion. This instant ly removes complexity caused by the idiosyncrasies of
different language versions and coding pract ices, typical in large legacy
appl icat ions developed over many years.

Here is a br ief descript ion of some of these diagrammat ic constructs and views:

Structure Chart Diagram - A Structure Chart Diagram (SCD) Display gives a
graphic representat ion of how the control passes from one program to another
program within the appl icat ion. This fol lows the cal l structure down the complete
stack. The diagram also reveals data input objects and also automat ical ly derives a
summarized descript ion of each of the object in the diagram. Color-coding also
reveals important funct ional aspects such as updates, pr ints, and displays, which
help the user to zone in on commonly, sought af ter detai ls.

Data Flow Diagram - A Data Flow Diagram (DFD) is a graphical representat ion of a
program/object where used, showing the f i les and programs accessed by the
subject object. I t is also color-coded and shows both f low of data at a high object
level, and contextual information about the specif ic var iables/parameters passed
between objects.

6

Figure 1: Structure Chart Diagram for a Program

Analysis & Documentation with X-Analysis

Program Structure Chart - A Program Structure Chart graphical ly displays the
sequence of cal ls in the program. The cal l could be to execute a Subroutine /
Program / Module / Service Program. For detai ls, refer to X-Analysis User Manual.

7

Figure 3: Program Structure Chart for a Program

Figure 2: Data Flow Diagram for a Program

Analysis & Documentation with X-Analysis

Overview Structure Chart - The Overview Structure Chart gives a snapshot of an
appl icat ion. I t displays al l the entry points to the appl icat ion, and then the structure
chart for each of these entry points.

RPG as Pseudo Code- With a s ingle c l ick, RPG can be viewed as a form of
structured English or Pseudo code. Mnemonics. are subst i tuted wi th
f i le/ f ield/variable texts and constants or l i terals.

8

Figure 4: Overview Structure Chart for complete application

Analysis & Documentation with X-Analysis

Producing Static Documentation Automatically

Interact ive analysis v ia a graphical c l ient is general ly the most intuit ive manner in
which to analyze a system, but there is often a requirement for var ious types of
stat ic information in the form of structured documentat ion. Examples of th is are
project documentat ion, audit ing information, test ing instruct ions, and customer
support documentat ion (such as with ISV suppl ied business software). X-Analysis
produces a number of these outputs including:

Data Flow Chart in MS Visio - Any interact ive diagram produced by X-Analysis 8
in the cl ient, can be automat ical ly exported instant ly to MS Visio with a single cl ick.
In addit ion to th is, an RPG or COBOL program can be produced as a data f low
chart interact ively whi le browsing the source from within X-Analys is. I f the RPG
program is in Pseudo Code mode, the Data Flow Chart wi l l use the narrat ives from
the Pseudo code. This enables non-system i technologists and analysts to
assimilate informat ion at a detai led level of the appl icat ion wi thout any dependency
on RPG or COBOL experts.

9

Figure 5: RPG to Pseudo code with a single click

Analysis & Documentation with X-Analysis

Lists and Results sets – Any source, object, or impact-analysis result l is t can be
direct ly exported to formatted MS Excel or Word with a s ingle cl ick while using the
cl ient .

MS Word Project Documentation Wizard – With the use of a simple wizard,
documents that might take weeks to produce manually, al low the user to select any
of the graphical diagrams, l is ts, f lowcharts, annotat ion and business rules
summaries generated interact ively by the cl ient interface, can be col lated into a
s ingle document wi th contents and index. This can be done for a s ingle object, an
appl icat ion area (explained below), a l is t of objects, or an ent ire system. Any of
these documents can then be edited and distr ibuted as required.

Dividing Systems into Application Areas

Entire legacy appl icat ions are often too large to effect ively comprehend or effect
wholesale change. For this reason i t is of ten necessary or helpful to sub div ide a
system into appl icat ion areas. The reasons and specif icat ions for these may
change with t ime too. X-Analysis provides faci l i t ies for subdividing an appl icat ion
area into groups of objects that meet user def ined select ion cr i ter ia. These cr i ter ia
might be based on funct ion or even gener ic name. X-Analysis then uses the
sophist icated cross-reference information and Data Model relat ionships to include,
automatical ly al l related elements such as programs, displays, or f i les in the

10

Figure 6: DFD exported to MS Visio

Analysis & Documentation with X-Analysis

applicat ion area. Appl icat ion areas f i l ters can then be used through the X-Analysis
Solut ion Sets to v iew, document or re-engineer as opposed to indiv idual objects.

The Appl icat ion Area diagram in X-Analysis is interact ive and by cl icking on
different parts of your system you can see the relat ionships between either al l
parts or just the area you've cl icked on and the areas i t relates to.

11

Figure 7: Application Area diagram for System Overview

Analysis & Documentation with X-Analysis

S u m m a r y

Comprehensive, accurate, and current documentat ion of a legacy appl icat ion
improves qual i ty, product iv i ty and reduces r isk, for any maintenance, modernizat ion
or rebui ld IT project. The r isk associated with maintaining large complex legacy
appl icat ion, with a rapidly diminishing set of legacy ski l ls , can be largely mit igated
by access to such documentat ion.

X-Analys is provides qual i ty analysis and documentat ion feature. 20 years of
development effort , ensures that v ir tual ly any legacy appl icat ion can be analyzed
and automat ical ly documented.

Richard Downey and Stuart Milligan
© Databorough

12

10

