\V/

Databorough

Analysis and Documentation

with X-Analysis

» Analyze Application Graphically

» Automatic System Documentation

Richard Downey
Stuart Milligan

WhHiTE PAPER

Developing tools services for analyzing and re-engineering RPG
applications for the last 20 years, has given Databorough a
unique view of the very large and complex world of legacy
applications running on System i, iSeries and AS/400. In 2005,
IBM and Databorough published an IBM Red book “Modernizing
and Improving the Maintainability of RPG Applications Using X-
Analysis Version 5.6”. This paper expands on the recently
released white paper 'Modernizing RPG/COBOL System i
applications using X-Analysis 8' incorporating new concepts and
methods for application analysis and documentation of a RPG
applications. Contact info@databorough.com for a copy of the
white paper, the Red book and trial software.

mailto:info@databorough.com

Table of Contents

EXECULIVE SUMIMATYootiiiiiiiiiieiiieeie ettt ettt ettt et e et estteebeeeaeeeabeessaeenseesseeenbeessaeeansseesannbeeeannees 1
INEEOMUCTION. ...ttt et b e et e bt e e st e b e et e e bt e e st e e bt e sabeebeeeabeeenbeeeeneee 2
Why Design Recovery 1S diffiCult.........ccoooiiiiiiiiiii et 3
Analysis, Documentation & Application SUDAIVISION........cceruiieiiiieriiieeiie ettt eteeeeree e e siereeee e e eeaeeas 5
Understanding Design & Function More Easily..........ccoooiiiiiiiiiiiiiiiiiicee e 5
Producing Static Documentation AUtomMatiCally..........cccviiviiiiiiiiiieiiie et e e 9

Summary

Analysis & Documentation with X-Analysis

Executive Summary

The knowledge and information contained in an organization's business software is
vitally important and very valuable but often this information covering the
operation, metrics, and design of the software is tantalizingly out of reach. Without
this knowledge, maintenance and changes to the system are not as efficient or
effective as they could be, and the risk of failure or problems increases
exponentially the larger the enhancement required. This could lead to a paralysis
where changes can't be made due to a lack of confidence in the outcome.

Accurate and current information about an entire system can greatly improve the
productivity of your IT staff, and reduce maintenance costs by eliminating the need
to research, catalog and assemble the information manually for each service
request, or modernization project.

Existing System i’ applications have some fairly consistent and distinct
characteristics that mark them as costly and potentially high-risk:

Applications tend to be large and complex
Little or no documentation

Original Designers no longer available
They have been developed over many years
Monolithic Programming Model

Written in obsolete languages

AP WN-=-

Points 1 through 3 can largely be managed more effectively by investing in a
product like X-Analysis to both recover the design of the application, and provide
highly productive analysis tooling to compensate for the complexity of the
application.

Inconsistent programming standards and designs, significant amounts of redundant
and duplicated code, and an increasingly costly demand for globally diminishing
legacy development skills, are the results of points 4, 5 and 6.

This paper will illustrate how the X-Analysis carries out analysis and automatic
documentation which delivers deep insights of your systems.

1 Note - for consistency throughout this document we use System i to refer to the family of computers
that grew out of IBM’s System/38 over the last twenty years namely the AS/400 , iSeries and latterly the
System i and IBM i on Power. We have picked System i as it is the current name used by IBM though
most readers (and the author) will likely use the earlier terms.

Analysis & Documentation with X-Analysis

Introduction

As we have seen gathering knowledge about System i applications is not a
straightforward task for today's generation of business analysts and developers. To
illustrate that point and to fully understand the problem domain we will look at Why
Design Recovery is difficult? by working through the problems that X-Analysis
solves in building its repository of design recovery information.

In situations where developers are not familiar with a system or its documentation
is inadequate, the system's source code becomes the only reliable source of
information. Unfortunately, source code has much more detail than is needed just
to understand the system, also it disperses or obscures high-level constructs that
would ease the system's understanding. X-Analysis aids system understanding by
identifying recurring program features, classifying the system modules based on
their purpose and usage patterns, and analyzing dependencies across the modules.

This analysis provides detailed design information about the entire system,
accessible to non RPG/COBOL experts, and be easily updated to incorporate
ongoing changes in the base system.

Whatever the business needs driving companies to modernize their applications,
most want to ensure that the business logic and functional design are preserved to
varying degrees as these are core assets.

Design Recovery of an application can be broken down into a few logical steps or
stages that represent a generic adaptable approach to any application
modernization project:

Analysis, Documentation, Application Subdivision - This type of analysis
represents the most common use of the X-Analysis tool across the world. On top of
very powerful cross-referencing functionality, graphical, narratives or a combination
of both, are used to abstract and describe the system in a simple and intuitive way,
even for non-RPG/COBOL experts. The legacy application can be completely
documented using modern diagramming standards such as UML, Entity
Relationship Diagrams, System Flow Diagrams, and Structure Charts etc.
Furthermore, the legacy system can be automatically subdivided into application
areas so that effective system overview & interface diagrams can be generated.
The complete application documentation can then be output to a variety of third
party design tools such as Rational, MS Visio, MS Word, etc. — indeed any tool
capable of importing XML or DDL is supported.

2 |f your colleagues or the project sponsors don’t appreciate the difficulty of modernization get them to
read this section.

Analysis & Documentation with X-Analysis

Recovering an Application design — [This is beyond the scope of this document
so we won’t go into detail here.] This advanced level of analysis extracts model
information from the existing application. X-Analysis uses its own analysis
repository, plus pattern searching algorithms, to derive relational data models,
extract business rules, build UML Activity/Use/Case Diagrams, and logical screen
flows. Only relevant designs need be used as a base specification for new
developers to rewrite the application. The structured, repository-based format of
these extracted designs, make it possible, to programmatically reuse them for
rebuilding the core of a new application. This can be done with purpose-built tools,
with X-Modernize or a combination of both.

Redeveloping Using a Recovered Application Design — [This is beyond the
scope of this document so we won’'t go into detail here, if you require more
information please contact Databorough for the modernization white paper.] This
starts with database modernization using the recovered data model. The designs
for the view, controller, and business rule logic are also extracted and reused in
modern frameworks such as Hibernate, and with new JSF/Facelets and Java bean
components. This option makes it possible to programmatically re-factor the
existing application into modern, consumable assets and artifacts for developers to
use for a system rebuild. The objective is to produce clean, well structured,
industry standard code rather than messy syntax conversions with un-maintainable
code.

Why Design Recovery is difficult

From the point of view of the user of X-Analysis this process of building the cross-
reference repository and deriving the models happens automatically! It's just there
and happens typically as part of the installation process - though it can be
triggered again later on if required. However it is worth taking some time to
understand this process and to see what happens, how the model is constructed
and the relationships inferred.

If you think for a minute of a typical System i application it is likely to consist of a
mix of RPG programs, DDS files and members for display files, database files and
logical views, newer systems may have these interspersed with SQL scripts but the
sum of knowledge in that system, how it works and interacts amongst its various
elements is contained within those source files and compiled objects - the issue is
retrieving that knowledge efficiently.

To understand and fully appreciate the problems X-Analysis solves just consider
the process you would have to undertake yourself if you wanted to discover how a
system operates or make changes to it. As a simple example for part of your
application you have a customer details screen with no dedicated place for an
email address and mobile phone numbers, the system has adapted itself to the
internet age as many System i apps have done by making use of .extra. and .notes.
ad-hoc fields. The system has coped but it has been time consuming to retrieve
these details when required for marketing purposes. But there is now a budget to
correct this and start to look at modernizing the application and making the
functionality available to more areas of the business.

Analysis & Documentation with X-Analysis

You would probably first start by looking at the program and display files that
handle the display and maintenance of the customer information, from that you
would discover the database tables/files involved.

At this point from a simplistic point of view you have the necessary information to
make the changes and they are probably not that difficult - add new fields for email
and mobile phone to the database tables or rename the existing ones then modify
the program and display files accordinglyj} but you're probably thinking what about
the rest of the system? What else uses that table? Is the display file used
anywhere else? So the change has more aspects than would first appear these are
just a few of the questions we have to answer:

Scope and impact of the change - how many programs and tables are effected?

Database changes - do we add new fields or just rename the fields and preserve
the status quo? Do we know those fields were only used for email and mobile
phone data?

Database integrity - Fields destined for ad-hoc data like 'extra information' and
'notes' are unlikely to have any validation or to be even required so if migrating
the existing values to new fields we can't simply copy it over some cleansing will

be required.

The process of gaining the knowledge to answer these questions may not be all
that straightforward, particularly if the systems are complex or the people trying to
answer them are new to the application, system or platform.

To assess the scope and impact of the change you need to find out which programs
use the files/tables affected , this can be very laborious :

Go through all source files in PDM,
option 25 to searching

then F13 to repeat

press enter ,

type in your search term

review results ...

SRS SXXK-«~

...and that's just the first enquiry! Depending on the complexity and history of your
systems you may have doubts that you were looking at all of the source or the
latest version.

Looking into Database integrity may well throw up items like the screen shot below:

Analysis & Documentation with X-Analysis

|Notes Field Extra Info Field
|{used for email address) (used for mobile phone number)

|ibloggs7@aocl.com Cell: TO05596236

|sherylc@msn.com 07568 456321

[HSMITH at SUN.COM 447390957852
|email: jhooth@mac.com Mahile 07546995835
|07678 678912 suzi@btconnect.com

We have a number of different formats of email address and some extraneous text ,
similarly on the phone number list there is text and a variety of layouts. Finally we
have the inevitable result of using ad-hoc fields with no validation or on screen
guidance - transposed data mobile in email and vice-versa.

Hopefully this section raised awareness of the problems around changing and
modernizing System i applications, the issues with finding out the necessary
information and how seemingly straightforward issues can be time consuming and
problematic. X-Analysis is designed and optimized to make the design recovery
process as straightforward as possible as the rest of this concepts guide will
illustrate.

Analysis, Documentation & Application Subdivision

X-Analysis builds a very detailed repository over an entire application. The
repository maintains all information about application objects, their relationships
and all necessary information to obtain detailed information from each object
across the entire system. 20 years of ongoing development, over thousands of
AS/400/iSeries/System-i applications written in all variants of RPGII/400/1V,
COBOL, and CL, has produced an unmatched capability to extract everything about
an application from object right down to individual variables. The repository is built
automatically using a single command, and initially collects all object related
information, but then parses every source member in the specified system and
every source line mapping the contextual information of each variable in the
system. A certain amount of logical abstraction processing then takes place while
building the repository to account for some of the idiosyncrasies typical in an RPG
application. This includes constructs such as variable program calls, file overrides,
prefixing and renaming in RPG. The repository thus represents a map of how the
entire application functions right down to individual variables.

Understanding Design & Function More Easily

For efficient familiarization of an application's structure and general function, an
abstraction above the source code combined with object-to-object relational

Analysis & Documentation with X-Analysis

information is required. A few simple but rich types of color-coded, graphical
diagrams can reveal the data flow and architecture of individual objects or parts of
an entire system. This is combined with automatically derived descriptions in the
form of Pseudo narratives either in the diagrams or while browsing source code.
The drill-down, go-anywhere-from-anywhere, interactive nature of these interfaces
in the X-Analysis client provides a unique approach to information assimilation,
allowing an analyst to gather information at high level or very detailed in an
efficient and intuitive manner. The application abstraction is raised one level above
implementation. This instantly removes complexity caused by the idiosyncrasies of
different language versions and coding practices, typical in large legacy
applications developed over many years.

Here is a brief description of some of these diagrammatic constructs and views:

Structure Chart Diagram - A Structure Chart Diagram (SCD) Display gives a
graphic representation of how the control passes from one program to another
program within the application. This follows the call structure down the complete
stack. The diagram also reveals data input objects and also automatically derives a
summarized description of each of the object in the diagram. Color-coding also
reveals important functional aspects such as updates, prints, and displays, which
help the user to zone in on commonly, sought after details.

—CLET - Build Customer Letter DTHCF-.L|
4ILI:—IT-11 - Letter Prefix Generation OTHFIL |
~—WRICUISL - Customer Letter PRTFIL
CUSLETSO - Update Letter Sequence UPDFIL |
WHKCUSSEF - Find Fax Mumber OTHFIL |
WKCUSBE - Customer Release Letter LIPDFIL |
WKCLISEP - Customer Enguiry Letter PRTFIL |

Figure 1: Structure Chart Diagram for a Program

Data Flow Diagram - A Data Flow Diagram (DFD) is a graphical representation of a
program/object where used, showing the files and programs accessed by the
subject object. It is also color-coded and shows both flow of data at a high object
level, and contextual information about the specific variables/parameters passed
between objects.

Analysis & Documentation with X-Analysis

CUSFMAINT

:h
Customer Site Maintenance -
T R TETE e = 1
— DISTS 5 T — CUSFMAINTD CUSFSEL
Distributors Sites by Mumber Custamer Site Customer Site
= Maintenance Selection =
"\-__|__—__,_,_.- "'\-__|__—____,_.- r
[wwccons [WWRAREAS [CUSFMAINTC WWCUSF
Wark with Wark with Rep. Customer Site Wark with
— Customer Delivery Areas “— Maintainance Custorner Sites [
Contacts

Figure 2: Data Flow Diagram for a Program

Program Structure Chart - A Program Structure Chart graphically displays the
sequence of calls in the program. The call could be to execute a Subroutine /
Program / Module / Service Program. For details, refer to X-Analysis User Manual.

YWWRAREAS - Work with Rep, Delivery Areas

~— *IMZ5R

SMENSEL - Salesmen Selection |
—— 7sFLWRT

XBCCLMSG - Clear 2 Messags Queus |
——— zcmDKeYs |

——— 7F03 |

12 |

——E| zseLECT |

Figure 3: Program Structure Chart for a Program

Analysis & Documentation with X-Analysis

Overview Structure Chart - The Overview Structure Chart gives a snapshot of an
application. It displays all the entry points to the application, and then the structure
chart for each of these entry points.

~F4CBC110 - Order Entry System OTHFIL |
CEQ0TR |

—HJCLET - Build Customer Letter OTHCALl
——JLETN1 - Letter Prefix Generation OTHFLL (GTH|
H—WHKCLISL - Customer Letter PRTFIL |

~—CLETM - Print Customer Letter OTHCFJ.Ll
————LETN1 - Letter Prefix Generation OTHFLL (OTH)|

CMTCMAINT - Contacts Maintenance EDTRCDl

~—4CPDM - List Correspondence OTHCALl

Figure 4: Overview Structure Chart for complete application

RPG as Pseudo Code- With a single click, RPG can be viewed as a form of
structured English or Pseudo code. Mnemonics. are substituted with
file/field/variable texts and constants or literals.

Analysis & Documentation with X-Analysis

0

0022 .0C Repeat until (Redisplay Screen egual to
0023.00C Repeat until ([Beturn Code equal to 'E
0024 .0C and [Mode equal to ' ')

0025.00C If (5rl.no. egual to *BLANES)
002&.00 Mowve left =CN to ZZERERE (1)
g027.00 Mowve left "CEMO003' to MSGID (7)
0028.00 End

0029.00 Mowve LCLCFN to Account Type

0030.0C Perform (Validate Screen)
.00 Eead Accounts Master File <| |26>

00 /% INITIALISE SCREEN

S R
I T

Type egual to "ACT')

Statu=s equal to 'D')

0033.00 If

T i
LI B SRR L

Figure 5: RPG to Pseudo code with a single click

Producing Static Documentation Automatically

Interactive analysis via a graphical client is generally the most intuitive manner in
which to analyze a system, but there is often a requirement for various types of
static information in the form of structured documentation. Examples of this are
project documentation, auditing information, testing instructions, and customer
support documentation (such as with ISV supplied business software). X-Analysis
produces a number of these outputs including:

Data Flow Chart in MS Visio - Any interactive diagram produced by X-Analysis 8
in the client, can be automatically exported instantly to MS Visio with a single click.
In addition to this, an RPG or COBOL program can be produced as a data flow
chart interactively while browsing the source from within X-Analysis. If the RPG
program is in Pseudo Code mode, the Data Flow Chart will use the narratives from
the Pseudo code. This enables non-system i technologists and analysts to
assimilate information at a detailed level of the application without any dependency
on RPG or COBOL experts.

Analysis & Documentation with X-Analysis

OEQD2 | a
QOrder Enguiry

__PTYPES OE002DF
Sites by Mumber by Cusno Products Order Enquiry
Representative Dizplay

Program Centered Datd Flow Diagram for OED2
Tatad (Fhjexis: 5

OEN02
Cirder Enguiry
m DEO02DF DEMENU
by Cusnaol Cirdar Enguiry Cwrdar Endry
Loty i Represantalive Display Mhenu

Figure 6: DFD exported to MS Visio

Lists and Results sets — Any source, object, or impact-analysis result list can be
directly exported to formatted MS Excel or Word with a single click while using the
client.

MS Word Project Documentation Wizard — With the use of a simple wizard,
documents that might take weeks to produce manually, allow the user to select any
of the graphical diagrams, lists, flowcharts, annotation and business rules
summaries generated interactively by the client interface, can be collated into a
single document with contents and index. This can be done for a single object, an
application area (explained below), a list of objects, or an entire system. Any of
these documents can then be edited and distributed as required.

Dividing Systems into Application Areas

Entire legacy applications are often too large to effectively comprehend or effect
wholesale change. For this reason it is often necessary or helpful to sub divide a
system into application areas. The reasons and specifications for these may
change with time too. X-Analysis provides facilities for subdividing an application
area into groups of objects that meet user defined selection criteria. These criteria
might be based on function or even generic name. X-Analysis then uses the
sophisticated cross-reference information and Data Model relationships to include,
automatically all related elements such as programs, displays, or files in the

10

Analysis & Documentation with X-Analysis

application area. Application areas filters can then be used through the X-Analysis
Solution Sets to view, document or re-engineer as opposed to individual objects.

[ﬂﬁ-ﬁulﬁﬁ!’ml

Figure 7: Application Area diagram for System Overview

The Application Area diagram in X-Analysis is interactive and by clicking on
different parts of your system you can see the relationships between either all
parts or just the area you've clicked on and the areas it relates to.

11

Analysis & Documentation with X-Analysis

Comprehensive, accurate, and current documentation of a legacy application
improves quality, productivity and reduces risk, for any maintenance, modernization
or rebuild IT project. The risk associated with maintaining large complex legacy
application, with a rapidly diminishing set of legacy skills, can be largely mitigated
by access to such documentation.

X-Analysis provides quality analysis and documentation feature. 20 years of

development effort, ensures that virtually any legacy application can be analyzed
and automatically documented.

Richard Downey and Stuart Milligan
© Databorough

12

